Capturing Inter-Application Interference on Clusters

Aamer Shah and Felix Wolf
German Research School for
Simulation Sciences
Laboratory for Parallel Programming
{a.shah, f.wolf} @grs-sim.de

Abstract—Cluster systems usually run several applications—
often from different users—concurrently, with individual appli-
cations competing for access to shared resources such as the file
system or the network. Low application performance is therefore
not always the result of inefficient program design, but may
instead be caused by interference from outside. However, knowing
the difference is essential for an appropriate response. Unfortu-
nately, traditional performance-analysis techniques consider an
application always in isolation, without the ability to compare its
performance to the overall performance conditions on the system
when it was executed. In this paper, we present a novel approach
of how to correlate the performance behavior of applications
running side by side. To accomplish this, we divide the application
runtime into fine-grained time slices whose boundaries are syn-
chronized across the entire system. Mapping performance data
related to shared resources onto these time slices, we are able to
establish the simultaneity of their usage across jobs, which can be
indicative of inter-application interference. Our experiments show
that such interference effects, for which the developer is usually
not to blame, can degrade application performance significantly.

I. INTRODUCTION

Many cluster systems are operated in space-sharing mode.
Unless an application requires all cluster nodes for itself, the
system is divided among several concurrently running jobs,
with the exact partitioning determined by the job scheduler.
Depending on the precise configuration, an application usually
owns only some of the resources such as the CPUs it is running
on exclusively, while others such as the file system and the
network are shared among one or more jobs. Naturally, the
performance behavior of a job using such shared resources
depends not only on its own usage pattern but also on the
load that other shareholders impose at the same time. For
example, two jobs that write large data sets concurrently may
see less file-system bandwidth than two that serialize their
I/0. This phenomenon can be thought of as application jitter.
While jitter coming from the operating system [1]-[4] received
much attention in the past, inter-application interference on
clusters is known but has so far not been subject to systematic
investigation. However, its asynchronous nature can hamper
scalability in a similar way.

In spite of this situation, traditional performance-analysis
tools [5]-[8] still consider an application from a first-person
perspective. They collect performance data exclusively for
one application with the implicit assumption that it runs in
isolation. The only way to account for interference with such
tools is to run the application multiple times and to quan-
tify run-to-run variation. Otherwise, foreign load on shared

978-1-4799-0898-1/13/$31.00 ©2013 IEEE

Sergey Zhumatiy and Vladimir Voevodin
M. V. Lomonosov
Moscow State University
Research Computing Center
{serg, voevodin} @parallel.ru

resources cannot be blamed for reduced performance. And
even then the precise nature of this interference remains
opaque. Although approaches [9], [10] exist to silently create
performance profiles of all jobs running on a system and thus
to capture all those that share the system at a given time, the
ability to establish the simultaneity of performance events, a
prerequisite for the correlation of performance events across
jobs, is still missing.

In this paper, we present a new workload-oriented
performance-analysis approach that can be used to detect
and present signs of application interference. Like in earlier
scenarios, we capture basic performance data from every job
of the system. The novelty, however, is to divide the time
on the system into small slices for which we record the
performance data separately. The slices are thin enough so
that even smaller performance events such as sudden peaks of
file I/O in one application can be correlated with temporary
performance degradation observed for another. Different from
incremental profiles of individual jobs [11], the slice bound-
aries are synchronized across the whole system to ensure that
the slices of different jobs running at the same time can be
precisely mapped onto each other.

The remainder of the paper is organized as follows: In
Section II, we explain our approach in more detail and
introduce LWM?Z2, a monitoring module that collects time-
sliced performance measurements from applications, sketching
its design and deployment. The experimental evaluation in
Section III quantifies LWM?’s runtime overhead before an-
alyzing interference effects at the level of the file system, of
the network, and of shared nodes. Finally, we draw conclusions
and define future research directions in Section IV.

II. ARCHITECTURE

To capture application interference, we model the operation
of a cluster system as a time-space grid, as illustrated in
Figure 1. The space dimension represents the hardware, which
is divided into a set of disjoint nodes. Each node may run one
or more processes. The time dimension represents the runtime
of the system, which is divided into a set of disjoint time
slices. Discrete time slices are needed to establish an approx-
imate notion of simultaneity among performance phenomena.
Assuming static allocation of hardware resources, each job on
the system occupies one or more rectangular areas that all start
at the same time and end at the same time. Performance data
is collected at the granularity of processes and time slices.
Thus, for each time slice and process, we record a vector of
performance metrics, resulting in as many metric vectors per
node as there are processes on the node during the time slice.

A l l
31 l Hnnn
B B i
Z i T '
) ! !
!._..:.._..T.._..:.:.'.‘.T.: T — JII _____________ o
A Cc

Fig. 1. Operation of a cluster system as a time-space grid. The picture shows
four nodes, each running four processes (denoted by colored squares) at a
time. The brightness of each square indicates the intensity of a performance
metric. In the highlighted time slice, high intensity in job A coincides with
low intensity in job B.

Now we can correlate performance data in two different
ways: First, we can check whether we can see differences
between different nodes that remain stable across an extended
period of time. Although outside the scope of this paper,
this information can be used to detect hardware anomalies
that do not constitute outright failure but lead to some form
of performance degradation applications cannot be blamed
for. Examples include network links whose throughput is
reduced due to cabling problems, a node throttled due to some
error condition, or a smaller amount of per-node memory.
Second, and this is central to our approach, we can compare
the performance of an application during a given time slice
with the performance background, that is, the performance
of applications running at the same time on relevant parts of
the system. Since the possibility of interference depends on
the topological characteristics of the system, we also precisely
record the node each process is running on.

We implement the proposed approach by collecting per-
formance data from every job running on the system. For this
purpose, we designed a lightweight monitoring module called
LWM? that is supposed to be dynamically linked to each appli-
cation at job start—with the option of being disabled if needed.
Our monitoring module collects basic performance metrics
for each process, without modification of the executable and
with low time and space overhead. We achieve < 1% runtime
penalty and < 5 MB of required buffer space per process and
day.

The monitoring module features a modular architecture for
customization and further extendibility, offering compile time
customization of profiling capabilities with support for further
configuration of the compiled capability through environment
variables. Currently developed capabilities include profiling of
MPI applications, Pthreads-based multithreaded applications,
and CUDA applications through CUPTI [12], along with the
interception of POSIX file I/O calls. Support for Xeon Phi
accelerators is in progress. Finally, sequential performance is
measured through hardware counters using PAPI [13].

1) Instrumentation: To keep runtime dilation low, LWM?
employs direct instrumentation via interposition wrappers but

without making any time measurements inside, as their cost
can accumulate in application that frequently call any of the
wrapped functions. Interposition wrappers enclose all calls to
MPI and POSIX file I/O functions while CUPTT’s callback
functions are used for CUDA calls. The direct instrumentation
is used to count function calls and to intercept data-transfer
parameters such as the number and size of messages, the data
volumes read from or written to disk, or the amount of data
transferred between hosts and accelerators. Hardware counters
are recorded when crossing time-slice boundaries. In addition,
we apply sampling to estimate the time spent in certain classes
of functions. For this purpose, we earmark the wrapped routine
currently being executed so that we can correctly attribute
samples to them without having to examine the stack.

2) Time slices: In addition to creating a job digest at the
end that summarizes the whole execution in terms of perfor-
mance, LWM? creates separate profiles for each time slice,
which allow insights into the changing performance dynamics
of the application. As illustrated in Figure 1, the time slices
are synchronized across the system using system time so that
it is possible to compare and aggregate performance data both
across all processes of a parallel job and across all jobs running
on the system at a given time. In essence, time slices offer a
way to establish the simultaneity of performance incidents such
as file-system access storms. While we left the length of the
slices configurable, we chose a length of 4 s for the purpose
of this study. This is small enough to capture performance
dynamics with reasonable granularity but still large enough in
relation to the precision at which the system time is usually
synchronized (in the order of 1 ms without global clock). With
performance data collected at the granularity of time slices,
a user can now compare the performance dynamics of the
own application with the performance background and identify
correlations.

3) Multithreaded applications: Collecting time-sliced per-
formance data for multithreaded applications is not trivial. Spe-
cific challenges arise when trying to reconcile small memory
footprint with thread safety and low runtime dilation. We take
a number of steps to ensure a light and portable solution. First,
we manage threads at Pthreads level, which is the foundation
of many higher-level threading libraries. Second, we aggregate
the performance metrics of individual threads in situ at the
end of each time slice. We use a dual-buffer storage system
for threads, one buffer to collect live performance data and
second to allow data aggregation at time slice boundaries. The
roles of the buffers switch every time slice.

However, aggregating thread data at time slice boundaries
is difficult. Signaling the end of a time slice via a timer
interrupt is not an option as using mutexes in an interrupt is
prohibited. We employ an auxiliary heartbeat thread to solve
this dilemma. The heartbeat thread is created during LWM?’s
initialization and is activated only at time slice boundaries.
When activated, the heartbeat thread first creates new buffer
space for the new time slice. Then, it switches the active
buffer in the dual-buffer storage system for thread data. As
a last step, it aggregates performance metrics of individual
threads into LWM?’s linearly increasing buffer space. The in
situ aggregation means LWM? need less than 5 MB space
per process and day. The inability to use mutexes in a signal
handler is also the reason why we slice only the metrics

collected in wrappers, which however are sufficient to capture
the use of shared resources. The timings gained through
sampling are left to the execution digest, where they provide
a classic performance summary for the entire execution.

III. EVALUATION

Our evaluation pursues several objectives: First, we confirm
LWM?’s low runtime overhead. Second, we demonstrate how
it can be used to identify application interference. At the same
time, we analyze the interference potential of typical shared
resources.

All our tests were performed on two machines of the
Jillich Supercomputing Centre: JUROPA is a Linux cluster
consisting of 2208 compute nodes, each equipped with two
Intel Xeon X5570 (Nehalem-EP) quad-core processors running
at 2.93 GHz. The nodes are connected through an Infiniband
QDR network with non-blocking fat-tree topology. All our file
I/O was performed on a Lustre file system with four meta-
data servers (MDS) of type Bull NovaScale R423-E2 (two
Nehalem-EP quad-core & two Westmere-EP, 6-core) and eight
object storage (OST) servers of type Bull NovaScale R423-
E2 (Westmere-EP, 6-core) attached to the same Infiniband
network. JUDGE is a Linux GPU cluster. The node we used in
this study features two Intel Xeon X5650 (Westmere) 6-core
processor running at 2.66 GHz plus two Nvidia Tesla M2050
Fermi GPUs.

A. Overhead

Since silent profilers such as LMW? are supposed to be
operated in a compulsory mode, requiring at least an explicit
opt-out to be disabled, low overhead is essential for user
acceptance. The overhead of a profiler falls in two categories—
space and time. We collect currently 22 metric values 4 8
bytes per time slice (i.e., every 4 s) and process, resulting
in a memory footprint of less than 4 MB for 24 hours of
execution. The runtime dilation was verified using applications
from two benchmark suites: SPEC MPI 2007 [14] for single-
threaded MPI programs and the NAS Parallel Benchmark [15]
for hybrid MPI/OpenMP programs. The profiling overhead was
measured for alternated profiled and non-profiled execution
and repeated 30 times. After removing outliers with the
modified Z-score method [16], the mean overhead for almost
all cases was less than 1%. An anomalously high overhead
behavior was exhibited only by 143.dleslie of the SPEC MPI
2007 benchmark suite. Further investigation identified the
PAPI library as the source of this deviation. A run without
PAPI library resulted in the expected mean overhead of less
than 1%.

B. Interference

In spite of running in space-sharing mode, applications
on cluster systems usually share some resources that they
cannot own exclusively. Contention for such shared resources
may cause inter-application interference, one component of the
overall runtime jitter. In a set of experiments, we measured
the jitter resulting from this interference for different types of
shared resources.

Concurrently executing applications usually share at least
the file system and depending on its topology parts of the
network. Unless the file system is reached over a dedicated

-10*

File I/O calls

time slices

— Continuous I/O - no noise - Continuous I/0 - with noise
- - - Periodic I/O noise

(a) Continuos I/0 benchmark vs. periodic I/O noise.

w 1
= ' 1
< ' '
— ! .
& : !
=) !
e H '
! :
: '.
' IR
90
time slices
—— 128.GAPgeofem - no noise — 128.GAPgeofem - with noise
- - - Periodic network noise
(b) 128.GAPgeofem vs. periodic network noise.
-1010
|
8
S
[
o
A
2
=
=

time slices

—— Continuous P2P - no noise - Continuous P2P - with noise
- - - Periodic P2P noise

(c) Communication interference when sharing nodes.

-108

CUDA bytes sent to device

time slices

— GPU 1 only - GPU 1 of 2--- GPU 2 of 2

(d) Two GPU benchmarks sharing one PCI Express bus.

Fig. 2. Inter-application interferences when sharing a variety of resources.

network, file I/O also implies network traffic that may interfere
with network traffic between compute nodes. While some sys-
tems allocate nodes exclusively to a single job, others such as
Tsubame 2 at Tokyo Tech may even allow the sharing of nodes.
There, node sharing is motivated by the desire to balance
the need for classic CPUs and GPUs among a highly diverse
workload. If nodes are shared then contention may occur with
respect to the network interface, the memory, and, depending
on the architecture, the accelerator bus. We assume a sensible
node-sharing scheme in which applications run at least on
separate sockets with their physically attached memory, hence
already minimizing memory-subsystem interference. We target
each of these shared resources in experiments to measure their
impact as a source of interference.

In production environments, cluster applications experience
jitter from many sources. Extracting and measuring the contri-
bution of contention for a single resource to inter-application
interference is therefore challenging. To do exactly this, we
created a set of benchmarks, one for each resource type, that
inject noise according to a distinct periodic pattern of resource
usage. If the benchmark interferes with another simultaneously
executing application that makes use of the same resource, it
will impose the inverted pattern on the time-sliced profiles of
the application. That is, whenever the noise exhibits a peak, the
metrics of the application suffer a dent. Note that because each
metric value represents a rate (per time slice), the slowdown
affects all metrics. Thus, we identify interference through
inspection of time-sliced profiles. Moreover, we quantify the
interference effect by comparing the execution time under
noise with the time we see without introducing noise. Since
LWM? is still under test and at the time of writing not
mandatory for all jobs on the system, we could not profile
the complete workload—just the jobs we submitted ourselves.
However, the artificial noise pattern is distinct enough to make
coincidence extremely unlikely.

1) I/O subsystem: On JUROPA, file I/O operations may
share the communication network and I/O nodes. At the same
time, the network is also available to messages exchanged
between compute nodes. To study the interference potential
of file I/O operations, we ran two I/O intensive benchmarks
side-by-side, one with a continuous I/O pattern, and one with
a periodic I/O pattern. We ran each of the benchmarks with
256 processes on disjoint sets of 32 nodes of JUROPA. In
the first benchmark, which we call the probe, each process
continuously opened a file, wrote a 100 x 100 integer matrix
in consecutive write operations to it, one per element, and
closed it again. Each process used its own file. It was created
in the beginning and then re-used in each iteration. The second
benchmark, the noise, did the same, only that the stream of
matrix writes was periodically interrupted by phases of inactiv-
ity. The benchmarks performed predominantly file I/O. Hence,
any resulting interference pattern can be attributed to this I/O
with high confidence. Figure 2(a) shows the number of write
operations per time slice, accumulated across all processes,
as an indicator of performance. The imprint the noise left
on the probe as a sign of interference is clearly discernible,
especially when compared to the execution without noise.
The interference reduced the application’s write performance
significantly, with a drop of 50% at the points of interfer-
ence and an overall execution time prolonged by 35%. The

experiment was repeated several times and the same behavior
was observed each time. Exposing 128.GAPgeofem from the
SPEC MPI2007 suite, a finite-element code that performs I/O
on a regular basis, to our artificial noise resulted every time
in an abort with a “file not accessible” error, indicating that
I/O subsystem interference can even be prohibitive in certain
cases.

2) Communication network: Although we experimented
with a large variety of communication patterns and execution
configurations, we were surprisingly unable to find any un-
equivocal evidence of significant interference at the level of
message exchange between JUROPA’s compute nodes. This
might have to do with the generous bandwidth and the well-
balanced fat-tree topology of JUROPA’s network and does
therefore not necessarily apply to other systems. On the
other hand, advanced interconnect designs such as Cray’s Aries
suggest that pure network interference between applications
will play a minor role in the future anyway.

Nevertheless, what we found is a reproducible case of
interference between 128.GAPgeofem, which performs both
inter-process communication and file I/O in regular intervals,
and a noise benchmark that alternates between periods of
intensive global inter-process communication and periods of
silence. Each program was executed on a separate set of
128 nodes of JUROPA. This system has a two-layer fat-
tree topology, where each leaf switch connects 24 compute
nodes and the top level switches connect all the leaf switches.
Utilizing 128 nodes guaranteed that the two programs used
overlapping portions of the network. Figure 2(b) shows the
number of collective calls per time slice with and with-
out noise. It can be seen that during the network activity
phase of the periodic noise benchmark, the performance of
128.GAPgeofem drops by 10%. This leads to an overall 5%
longer execution time compared to a run without noise. The
experiment was repeated several times and each time 7% to
10% degradation was observed during the active phase of
the periodic noise benchmark. While this indicates that the
interference occurs at the level of the network, it remains
unclear whether the source of the interference was inter-
process communication or file I/O. During the entire execution,
each process of 128.GAPgeofem exchanges more than 1 GB
of data in MPI point-to-point communication (and a smaller
amount in collectives), while it writes only 0.5 MB of data to
files. On the other hand, when exposing 128.GAPgeofem to
network noise, we observed several failures due to the inac-
cessibility of the file system. Also in the light of our disability
to demonstrate pure network interference, we are therefore
inclined to attribute this phenomenon to cross-interference
between network communication and file 10.

3) Node: To improve resource utilization, some
accelerator-based HPC systems allow individual nodes
to be shared between CPU- and GPU-oriented applications.
An example is Tsubame 2 at Tokyo Institute of Technology,
which permits node sharing on its thin-nodes, consisting of
two host processors and three GPUs.

a) Network interface: Even if simultaneously execut-
ing applications do not share individual sockets, a common
scheduling constraint in the interest of minimizing interference
within the memory subsystem, the applications share at least
the network interface of the node. In our experiments, we tried

to investigate whether such sharing can lead to significant in-
terference. Since none of our test systems allowed nodes to be
shared between applications, we split the world communicator
of a single benchmark to mimic two different applications. The
communicator was split in such a way that the border between
the two communicators divided nodes but assigned the sockets
exclusively either to one or the other. Both communicators
performed MPI point-to-point communication, the first one
(i.e., the probe) in a continuous fashion, the second one (i.e.,
the noise) only periodically, that is, interrupted by phases of
inactivity. Figure 2(c) shows the number of bytes sent per
time slice for each communicator. For comparison, the probe
communicator was also measured with the noise communica-
tor disabled. We observed sporadic interference between the
two communicators during execution. We ran the experiment
several times and observed sporadic interference in each of the
runs, albeit occurring at different points. On average, a run with
ten bursts of noise lead to interference during four or five of
these bursts. Thus, the average probability of interference for a
single burst was between 0.4 and 0.5. A run of the benchmark
with only collective calls did not produce any interference.

b) PCI Express bus: Modern heterogeneous clusters
may feature more than one accelerator per node. If they are
attached to the same PCI Express bus like on JUDGE then
interference can occur when two GPU applications share a
node even if they do not share GPUs. This is also true for
a single application with multiple threads that use different
GPUs independently. To test this hypothesis, we ran a simple
benchmark on JUDGE, repeatedly multiplying matrices on a
single GPU. For each multiplication, the benchmark, which
was sequential on the host side, copied the matrix from the
host memory to the device. Two instances of the benchmark
were executed together on a shared node and compared with
a single-instance run. Figure 2(d) shows the number of bytes
transferred from host to device per time slice as an indicator of
overall progress. It can be seen that for shared execution, the
performance of the application drops by up to 50%, resulting
in 35% longer execution. To eliminate the host memory
as the source of interference, we replaced the second GPU
benchmark instance with another benchmark that accessed the
host memory in a way similar to the GPU benchmark but with-
out accessing the PCI bus. No performance degradation was
observed in this case. This strongly points to the shared data
bus as the bottleneck and source of performance degradation.

IV. CONCLUSION AND FUTURE WORK

To analyze inter-application interference on clusters, we
presented a novel profiling methodology based on the concept
of globally synchronized time slices that allows the correlation
of performance phenomena across jobs. By observing probe
applications exposed to a pronounced periodic noise pattern,
we analyzed the interference potential of several shared re-
sources. We found file I/O to be a major catalyst of interference
with I/O performance degraded by up to 50%. We further
identified slower file I/O as a likely effect of concurrent
inter-process communication. Finally, we found evidence of
bottlenecks at the host channel adapter and the PCI Express
bus that connects host and device on heterogeneous clusters

when sharing nodes between applications. The latter can be
easily addressed by investing in a separate bus.

With file I/O having crystallized as a central theme of
inter-application interference, we want to study especially I/O
interference patterns at greater detail, modeling its cost in
terms of time and energy, and looking for ways to avoid it,
for example, by designing I/O-aware scheduling policies.

Acknowledgement: This work has been supported by
the European Commission under Grant No. FP7-277463 and
by the Russian Ministry of Education and Science under Grant
No. 07.514.12.4001.

REFERENCES

[1] F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing super-
computer performance: Achieving optimal performance on the 8,192
processors of ASCI Q,” in Proc. of the ACM/IEEE Supercomputing
Conference, Phoenix, AR, USA, November 2003.

[2] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the in-
fluence of system noise on large-scale applications by simulation,” in
Proc. of the ACM/IEEE Supercomputing Conference, New Orleans, LA,
USA. 1EEE Computer Society, November 2010.

[3] S. Seelam, L. Fong, J. Lewars, J. Divirgilio, B. Veale, and K. Gildea,
“Characterization of system services and their performance impact
in multi-core nodes,” in Procs. of the IEEE International Parallel
Distributed Processing Symposium (IPDPS), 2011, pp. 104-117.

[4] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing applica-
tion sensitivity to OS interference using kernel-level noise injection,” in
Proc. of the ACM/IEEE Supercomputing Conference, Austin, TX, USA.
IEEE Computer Society, November 2008.

[5] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abrahém, D. Becker, and
B. Mohr, “The Scalasca performance toolset architecture,” Concurrency
and Computation: Practice and Experience, vol. 22, no. 6, pp. 702-719,
April 2010.

[6] W.E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach,
“VAMPIR: Visualization and analysis of MPI resources,” Supercom-
puter, vol. 12, no. 1.

[7] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER: A tool
to visualize and analyze parallel code,” in Procs. of WoTUG-18:
Transputer and Occam Developments, April 1995, vol. 44, pp. 17-31.

[8] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” International Journal of High Performance Computing Ap-
plications, vol. 20, no. 2, pp. 287-311, 2006.

[9] K. Firlinger, N. Wright, and D. Skinner, “Effective performance
measurement at petascale using IPM,” in IEEE 16th International
Conference on Parallel and Distributed Systems (ICPADS), December
2010, pp. 373 -380.

[10] R. Kufrin, “PerfSuite: An accessible, open source performance analysis
environment for Linux,” in 6th International Conference on Linux
Clusters: The HPC Revolution, Chapel Hill, NC, USA, 2005.

[11] K. Fiirlinger, M. Gerndt, and J. Dongarra, “On using incremental
profiling for the performance analysis of shared memory parallel
applications,” in Euro-Par 2007 Parallel Processing, ser. Lecture Notes
in Computer Science. Springer, 2007, vol. 4641, pp. 62-71.

[12] “CUDA toolkit documentation: CUPTI
http://docs.nvidia.com/cuda/cupti.”

[13] P.J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable inter-
face to hardware performance counters,” in Procs. of the Department
of Defense HPCMP Users Group Conference, 1999, pp. 7-10.

[14] “Standard performance evaluation corporation. (2007) SPEC MPI12007
benchmark suite. http://www.spec.org/mpi2007/.”

[15] R. F. van der Wijngaart and H. Jin, “The NAS parallel benchmarks,
multi-zone versions,” no. NAS-03-010, June 2003.

[16] B.Iglewicz and D. Hoaglin, How to detect and handle outliers. ASQC
Quality Press (Milwaukee, Wis.), 1993, vol. 16.

