
Performance Tuning in the Petascale Era

Felix Wolf1,2, David Böhme1,2, Markus Geimer1, Marc-André Hermanns1,
Bernd Mohr1, Zoltan Szebenyi1,2, and Brian J. N. Wylie1

1 Forschungszentrum Jülich,
Jülich Supercomputing Centre, 52425 Jülich, Germany

E-mail: {f.wolf, d.boehme, m.geimer, m.a.hermanns, b.mohr, z.szebenyi, b.wylie}@fz-juelich.de
2 RWTH Aachen University,

Graduate School AICES, 52056 Aachen, Germany

Driven by application requirements and accelerated by current trends in microprocessor design,
the number of processor cores on modern supercomputers grows from generation to generation.
As a consequence, supercomputing applications are required to harness much higher degrees
of parallelism in order to satisfy their growing demand for computing power. However, writing
code that runs efficiently on large numbers of processors remains a significant challenge. The
situation is exacerbated by the fact that the rising number of cores imposes scalability demands
not only on applications but also on the software tools needed for their development.

To address this challenge, the Helmholtz University Young Investigators Group Performance
Analysis of Parallel Programs at Jülich Supercomputing Centre (JSC) in cooperation with the
JSC Division Application Support creates software technologies aimed at improving the perfor-
mance of applications running on leadership-class systems. At the center of our activities lies
the development of Scalasca, a performance-analysis tool that has been specifically designed
for large-scale systems and that allows the automatic identification of harmful wait states in ap-
plications running on tens of thousands of processors. In this article, we highlight the research
activities of our group during the past two years and give an outlook on future work.

1 Introduction

Supercomputing is a key technology pillar of modern science and engineering, indispens-
able to solve critical problems of high complexity. The extension of the ESFRI road map
to include a European supercomputer infrastructure in combination with the creation of the
PRACE consortium acknowledges that the requirements of many critical applications can
only be met by the most advanced custom-built large-scale computer systems. However,
as a prerequisite for their productive use, the HPC community needs powerful and robust
development tools. These would not only help improve the scalability characteristics of
scientific codes and thus expand their potential, but also allow domain scientists to concen-
trate on the underlying models rather than to spend a major fraction of their time tuning
their application for a particular machine.

As the current trend in microprocessor development continues, this need will become
even stronger in the future. Facing increasing power dissipation and little instruction-level
parallelism left to exploit, computer architects are realizing further performance gains by
using larger numbers of moderately fast processor cores rather than by further increas-
ing the speed of uni-processors. As a consequence, supercomputer applications are being
required to harness much higher degrees of parallelism in order to satisfy their growing
demand for computing power. With an exponentially rising number of cores, the often
substantial gap between peak performance and the performance level actually sustained by

1



production codes is expected to widen even further. Finally, increased concurrency levels
place higher scalability demands not only on applications but also on parallel program-
ming tools. When applied to larger numbers of cores, familiar tools often cease to work
in a satisfactory manner (e.g., due to escalating memory requirements, failing displays, or
limited I/O performance).

To overcome this challenge, the Helmholtz University Young Investigators Group Per-
formance Analysis of Parallel Programs at Jülich Supercomputing Centre (JSC) in coop-
eration with the JSC Division Application Support creates software technologies aimed at
improving the performance of applications running on leadership-class systems with tens
of thousands of cores. At the center of our activities lies the development of Scalasca1, a
performance-analysis tool that has been specifically designed for large-scale systems and
that allows the automatic identification of harmful wait states in applications running on
very large processor configurations.

In this article, we give an overview of Scalasca and highlight research accomplishments
of our group during the past two years, focusing on the analysis of wait states and of time-
dependent behavior, as these two examples address the scalability of Scalasca regarding
both the number of processes and the length of execution, respectively.

2 Scalasca Overview

The current version of Scalasca supports measurement and analysis of MPI applications
written in C,C++ and Fortran on a wide range of current HPC platforms. Hybrid codes
making use of basic OpenMP features in addition to passing messages are supported as
well. Figure 1 shows the basic analysis workflow supported by Scalasca. Before any per-
formance data can be collected, the target application must be instrumented and linked
to the measurement library. When running the instrumented code on the parallel machine,
the user can choose between generating a summary report (‘profile’) with aggregate perfor-
mance metrics for individual function call paths and/or generating event traces recording
individual runtime events from which a profile or time-line visualization can later be pro-
duced. Summarization is particularly useful to obtain an overview of the performance
behavior and for local metrics such as those derived from hardware counters. Since traces
tend to rapidly become very large2, optimizing the instrumentation and measurement based
on the summary report is usually recommended. When tracing is enabled, each process
generates a trace file containing records for its process-local events. After program ter-
mination, Scalasca loads the trace files into main memory and analyzes them in parallel
using as many processors as have been used for the target application itself. During the
analysis, Scalasca searches for wait states and related performance properties, classifies
detected instances by category, and quantifies their significance. The result is a wait-state
report similar in structure to the summary report but enriched with higher-level commu-
nication and synchronization inefficiency metrics. Both summary and wait-state reports
contain performance metrics for every function call path and process/thread which can be
interactively examined in the provided analysis report explorer.

2



Instrumented
target

application

Measurement 
library

Parallel
analysis

Local
event traces

Wait-state 
report

Summary 
report

Optimized measurement configuration

Figure 1. Schematic overview of the performance data flow in Scalasca. Grey rectangles denote programs and
white rectangles with the upper right corner turned down denote files. Stacked symbols denote multiple instances
of programs or files running or being processed in parallel. The GUI shows the distribution of performance
metrics (left pane) across the call tree (middle pane) and the process topology (right pane).

3 Scalable Wait-State Analysis

In message-passing applications, processes often require access to data provided by remote
processes, making the progress of a receiving process dependent upon the progress of
a sending process. Collective synchronization is similar in that its completion requires
each participating process to have reached a certain point. As a consequence, a significant
fraction of the communication and synchronization time can often be attributed to wait
states, for example, as a result of an unevenly distributed workload. Especially when trying
to scale communication-intensive applications to large process counts, such wait states can
present severe challenges to achieving good performance.

3



1024 2048 4096 8192 16384 32768 65536 131072 262144
Processes

1

10

100

1000

T
im

e 
(s

)

Uninstrumented execution
Parallel trace analysis
Parallel trace replay

sweep3d, jugene_vn, scalasca-1.2

Figure 2. Scalability of wait-state search for the benchmark application SWEEP3D on the full JUGENE system.
The graph charts wall-clock execution times for the uninstrumented application and the analyses of trace files
generated by instrumented versions with a range of process numbers. The figure shows the total time needed for
the parallel analysis including loading the traces and collating the results and the time needed for the replay in
isolation. It can be seen that the total analysis takes less than 400 seconds and – for this particular example – is
still faster than the application itself.

3.1 Scalability

After the target application has terminated and the trace data have been flushed to disk,
the trace analyzer is launched with one analysis process per (target) application process
and loads the entire trace data into its distributed memory address space. Future versions
of Scalasca may exploit persistent memory segments available on system such as Blue
Gene/P to pass the trace data to the analysis stage without involving any file I/O. While
traversing the traces in parallel, the analyzer performs a replay of the application’s original
communication behavior3. During the replay, the analyzer identifies wait states in commu-
nication operations by measuring temporal differences between local and remote events
after their timestamps have been exchanged using an operation of similar type. Since trace
processing capabilities (i.e., processors and memory) grow proportionally with the number
of application processes, we can achieve good scalability at previously intractable scales.
Recent scalability improvements allowed us to complete trace analyses of runs with up to
294,912 cores on the full IBM Blue Gene/P system JUGENE (Figure 2).

3.2 Delay Analysis

In general, the temporal or spatial distance between cause and symptom of a performance
problem constitutes a major difficulty in deriving helpful conclusions from performance

4



data. So just knowing the locations of wait states in the program is often insufficient to
understand the reason for their occurrence. Building on earlier work by Meira, Jr. et
al.4, we are currently extending our replay-based wait-state analysis in such a way that it
attributes the waiting times to their root causes. The root cause, which we call a delay, is
an interval during which a process performs some additional activity not performed by its
peers, for example as a result of insufficiently balancing the load.

3.3 Evaluation of Optimization Hypotheses

Excess workload identified as root cause of wait states usually cannot simply be removed.
To achieve a better balance, optimization hypotheses drawn from a delay analysis typi-
cally propose the redistribution of the excess load to other processes instead. However,
redistributing workloads in complex message-passing applications can have intricate side-
effects that may compromise the expected reduction of waiting times. Given that balancing
the load statically or even introducing a dynamic load-balancing scheme constitute major
code changes, they should ideally be performed only if the prospective performance gain
is likely to materialize. Our goal is therefore to automatically predict the effects of redis-
tributing a given delay without altering the application itself and to determine the savings
we can realistically hope for. Since the effects of such changes are hard to quantify analyt-
ically, we simulate these changes via a real-time replay of event traces after they have been
modified to reflect the redistributed load.5, 6

4 Analysis of Time-Dependent Behavior

As scientific parallel applications simulate the temporal evolution of a system, their
progress occurs via discrete points in time. Accordingly, the core of such an application
is typically a loop that advances the simulated time step by step. However, the perfor-
mance behavior may vary between individual iterations, for example, due to periodically
re-occurring extra activities7 or when the state of the computation adjusts to new conditions
in so-called adaptive codes8.

4.1 Observing Individual Iterations

To study the time-dependent behavior, Scalasca was equipped with iteration instrumenta-
tion capabilities corresponding to dynamic timers in TAU9 that allow the distinction of in-
dividual iterations both in runtime summaries and in event traces. Moreover, to simplify the
understanding of the resulting temporal data, we implemented several display tools includ-
ing iteration graphs with minimum, median, and maximum representation (Figure 3(a)) as
well as heat maps to cover the full (process, iteration) space for a given performance metric
(Figure 3(b)).

With this new toolbox at our disposal, we evaluated the performance behavior of the
SPEC MPI2007 benchmark suite on the IBM SP p690 cluster JUMP, observing a large va-
riety of complex temporal characteristics ranging from gradual changes and sudden tran-
sitions of the base-line behavior to both periodically and irregularly occurring peaks, in-
cluding possible noise10. Moreover, problems with several benchmarks that limited their

5



(a) Minimum (green), median (blue), and maximum
(red) number of point-to-point messages sent or received
by a process in an iteration.

(b) Number of messages sent.

(c) Late Sender waiting time. (d) Number of particles owned by a process.

Figure 3. Gradual development of a performance problem along 1,300 timesteps of PEPC on 1,024 processors.

scalability (sometimes to only 128 processes) were identified, such as distributing initial-
ization data via broadcasts in 113.GemsFDTD and insufficiently large data sets for several
others. Even those codes that apparently scaled well contained considerable quantities of
waiting time, indicating possible opportunities for performance and scalability improve-
ment through more effective work distributions or bindings of processes to processors.

Another real-world code with a substantially time-varying execution profile is the
PEPC11 particle simulation code developed at Jülich Supercomputing Centre and subject to
an application liaison between our group and the PEPC developer team. The MPI code em-
ploys a parallel tree algorithm to efficiently calculate the forces the particles exert on each
other and also includes a load-balancing mechanism that redistributes the computational
load by shifting particles between processes. However, our analysis12 revealed a severe
and gradually increasing communication imbalance (Figure 3(a)). We found evidence that
the imbalance was caused by a small group of processes with time-dependent constituency
that sent large numbers of messages to all remaining processes (Figure 3(b)) in rank order,
introducing Late Sender waiting times at processes with higher ranks (Figure 3(c)). Inter-

6



estingly, the communication imbalance correlated very well with the number of particles
“owned” by a process (Figure 3(d)), suggesting that the load-balancing scheme smoothes
the computational load at the expense of communication disparities. Since the number
of particles also influence the memory requirements of a process, we further conclude that
the current behavior of concentrating particles at a small subset of processes may adversely
affect scalability under different configurations. Work with the application developers to
revise the load-balancing scheme and improve the communication efficiency is in progress.

4.2 Space-Efficient Time-Series Call-Path Profiling

While call-path profiling is an established method of linking a performance problem to
the context in which it occurs, generating call-path profiles separately for thousands of
iterations may exceed the available buffer space — especially when the call tree is large
and more than one metric is collected. We therefore developed a runtime approach for the
semantic compression of call-path profiles13 based on incremental clustering of a series of
single-iteration profiles that scales in terms of the number of iterations without sacrificing
important performance details. Our approach offers low runtime overhead by using only a
condensed version of the profile data when calculating distances and accounts for process-
dependent variations by making all clustering decisions locally.

5 Outlook

Besides further scalability improvements in view of upcoming systems in the range of sev-
eral petaflops, we plan to extend Scalasca towards emerging programming models such as
partitioned global address space languages and general-purpose GPU programming, which
we expect to play a bigger role in the future. Moreover, to offer enhanced functionality and
share development costs, we will integrate Scalasca closer with related tools including
Periscope14, TAU15, and Vampir16.

6 Acknowledgment

Financial support from the Helmholtz Association of German Research Centers through
Grants VH-NG-118 and VH-VI-228 and the Deutsche Forschungsgemeinschaft (German
Research Association) through Grant GSC 111 is gratefully acknowledged. Moreover,
the authors would like to thank the John von Neumann Institute for Computing for the
opportunity to use their high-end computer resources.

References

1. Jülich Supercomputing Centre, Scalasca, http://www.scalasca.org/.
2. Felix Wolf, Felix Freitag, Bernd Mohr, Shirley Moore, and Brian J. N. Wylie, Large

Event Traces in Parallel Performance Analysis, in: Proc. of the 8th Workshop on
Parallel Systems and Algorithms (PASA, Frankfurt/Main, Germany), Lecture Notes
in Informatics, pp. 264–273, Gesellschaft für Informatik. March 2006.

7



3. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr, A scalable tool
architecture for diagnosing wait states in massively-parallel applications, Parallel
Computing, 35, no. 7, 375–388, 2009.

4. Wagner Meira, Jr., Thomas J. LeBlanc, and Alexandros Poulos, Waiting time analysis
and performance visualization in Carnival, in: Proc. of the SIGMETRICS Sympo-
sium on Parallel and Distributed Tools (SPDT’96), pp. 1–10, Philadelphia, PA, 1996.

5. Marc-André Hermanns, Markus Geimer, Felix Wolf, and Brian J. N. Wylie, Verify-
ing Causality Between Distant Performance Phenomena in Large-Scale MPI Appli-
cations, in: Proc. of the 17th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP), pp. 78–84, IEEE Computer Society,
Weimar, Germany, February 2009.

6. David Böhme, Marc-Andre Hermanns, Markus Geimer, and Felix Wolf, Performance
Simulation of Non-Blocking Communication in Message-Passing Applications, in:
Proc. of the 2nd Workshop on Productivity and Performance (PROPER 2009), August
2009, (to appear).

7. Darren J. Kerbyson, Kevin J. Barker, and Kei Davis, Analysis of the Weather Research
and Forecasting (WRF) Model on Large-Scale Systems, in: Proc. of the Conference
on Parallel Computing (ParCo, Aachen/Jülich, Germany), vol. 15 of Advances in Par-
allel Computing, pp. 89–98, IOS Press. September 2007.

8. Sameer S. Shende, Allen D. Malony, Alan Morris, Steven Parker, and J. Davison de
St. Germain, Performance Evaluation of Adaptive Scientific Applications using TAU,
in: Proc. of the International Conference on Parallel Computational Fluid Dynamics
(Washington DC, USA), May 2005.

9. Allen D. Malony, Sameer S. Shende, and Alan Morris, Phase-Based Parallel Perfor-
mance Profiling, in: Proc. of the Conference on Parallel Computing (ParCo, Malaga,
Spain), vol. 33 of NIC Series, pp. 203–210, John von Neumann Institute for Comput-
ing. September 2005.

10. Zoltán Szebenyi, Brian J. N. Wylie, and Felix Wolf, SCALASCA Parallel Performance
Analyses of SPEC MPI2007 Applications, in: Proc. of the 1st SPEC Int’l Performance
Evaluation Workshop (SIPEW, Darmstadt, Germany), vol. 5119 of Lecture Notes in
Computer Science, pp. 99–123, Springer. June 2008.

11. Paul Gibbon, Wolfgang Frings, Sonja Dominiczak, and Bernd Mohr, Performance
Analysis and Visualization of the N-Body Tree Code PEPC on Massively Parallel
Computers, in: Proc. of the Conference on Parallel Computing (ParCo, Málaga,
Spain), vol. 33 of NIC Series, pp. 367–374, October 2005.

12. Zoltán Szebenyi, Brian J. N. Wylie, and Felix Wolf, Scalasca Parallel Performance
Analyses of PEPC, in: Proc. of the EuroPar Workshop on Productivity and Perfor-
mance (PROPER 2008, Las Palmas de Gran Canaria, Spain), vol. 5415 of Lecture
Notes in Computer Science, pp. 305–314, Springer. August 2008.

13. Zoltán Szebenyi, Felix Wolf, and Brian J. N. Wylie, Space-Efficient Time-Series Call-
Path Profiling of Parallel Applications, in: Proc. of the ACM/IEEE conference on
Supercomputing (SC09, Portland, OR), November 2009.

14. Technical University of Munich, Periscope, http://www.lrr.in.tum.de/
∼gerndt/home/Research/PERISCOPE/Periscope.htm.

15. University of Oregon, TAU, http://www.cs.uoregon.edu/research/tau/.
16. Technische Universität Dresden, Vampir, http://www.vampir.eu/.

8


