2606

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

Library-Independent Data Race Detection

Ali Jannesari and Walter F. Tichy

Abstract—Data races are a common problem on shared-memory parallel computers, including multicores. Analysis programs
called race detectors help find and eliminate them. However, current race detectors are geared for specific concurrency libraries.
When programmers use libraries unknown to a given detector, the detector becomes useless or requires extensive reprogramming.
We introduce a new synchronization detection mechanism that is independent of concurrency libraries. It dynamically detects
synchronization constructs based on a characteristic code pattern. The approach is non-intrusive and applicable to various
concurrency libraries. Experimental results confirm that the approach identifies synchronizations and detects data races regardless
of the concurrency libraries involved. With this mechanism, race detectors can be written once and need not be adapted to

particular libraries.

Index Terms—Parallel programming, parallelization libraries, ad hoc synchronization, synchronization primitives, dynamic analysis,

data race detection, debugging, multicore

1 INTRODUCTION

MULTICORE computers have become mainstream, but
programming them remains difficult. A particular
problem is data races, i.e., situations where several
processors simultaneously access the same variable, and
at least one of them writes it. Data races may lead to
inconsistent program states that are extremely difficult
to debug.

To mitigate this problem, automatic detectors have been
developed that identify program locations where data
races may occur. These detectors find potentially simulta-
neous accesses to variables and check whether synchroni-
zation constructs such as monitors, barriers, or wait
conditions serialize the accesses. If serialization is lacking,
the detector reports a race. For this to work, the detector
must know about the synchronization constructs that
programmers and compilers are using. If the detector is
uninformed about some of the synchronization constructs,
it may overwhelm the programmer with false positives.

The job of race detectors is made difficult by the
proliferation of libraries and parallel programming lan-
guages. Examples of current parallel programming models
include the following: POSIX API (Pthread), Cilk [1],
OpenMP [2], Galois [3], OpenCL [4], Streamlt [5], X10 [6],
TBB [7], X]Java [8], and CUDA [9]. These programming
models offer various constructs for parallelism, such as
basic threads, pipelines, master/worker, producer/
consumer, data parallelism, futures, work stealing, task
pools, and more. Most of these implement implicit
synchronization. There is also a variety of explicit

o A. Jannesari is with the German Research School for Simulation Sciences,
Aachen, Germany, and also with RWTH Aachen University, Aachen,
Germany. E-mail: ali.jannesari@rwth-aachen.de; jannesari@grs-sim.de.

e W.F. Tichy is with Karlsruhe Institute of Technology (KIT), Germany.
E-mail: tichy@kit.edu.

Manuscript received 10 Oct. 2012; revised 10 July 2013; accepted 8 Aug.
2013. Date of publication 20 Aug. 2013; date of current version 17 Sept. 2014.
Recommended for accepting by D. Kaeli.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2013.209

synchronization primitives, for example monitors, sema-
phores, barriers (cyclic and non-cyclic), compare-and-
swap, atomic data types, transactional memory, and others.
No race detector covers all of these constructs, even though
a programmer may mix several libraries in a single
program, for example OpenMP or OpenCL together with
Pthread or TBB. Programmers sometimes even avoid pre-
defined synchronization constructs altogether by program-
ming ad hoc wait loops or implementing their own
barriers [10]. In such cases, traditional race detectors have
no clue where synchronization occurs and therefore may
produce a large number of false positives. Adapting a race
detector to a new library, however, is not trivial.

We present an approach that eliminates the dependence
of race detectors on libraries. The technique identifies
synchronization operations automatically by searching
for a low-level code pattern that occurs in locks, barriers,
semaphores, etc., in high-level concurrency constructs
such as pipelines, and even in user-defined, ad hoc
synchronization code. The identification of synchroniza-
tion operations happens at runtime. A sophisticated,
hybrid race detection algorithm determines whether
data races may indeed occur.

We implemented our approach in the open source tool
Helgrind® [11], [12]." We demonstrate that the tool can
identify synchronization constructs from a wide range
concurrency libraries, without any information about them.
Experimental results show that Helgrind® identifies data
races with high precision, independent of the libraries used.

The remainder of this paper is structured as follows: In
Section 2, we present some backgrounds and discuss
synchronization operations in state-of-the-art program-
ming models and libraries. Section 2.1 describes our
approach. We explain the algorithm that identifies syn-
chronization operations and describe the detector. We
briefly cover implementation aspects in Section 3. An

1. Helgrind ™" is available at https:/ /svn.ipd kit.edu/trac/helgrindplus/
wiki

1045-9219 © 2013 IEEE. Personal use is permitted, but re}laublication/ redistribution requires IEEE permission.

See http:/ /www.ieee.org/publications_standards/pub:

ications/rights/index.html for more information.

JANNESARI AND TICHY: LIBRARY-INDEPENDENT DATA RACE DETECTION

evaluation is provided in Section 4. Section 5 describes
related work.

2 SYNCHRONIZATION

Synchronization may be explicit or implicit. Explicit syn-
chronization means that programmers insert calls to syn-
chronization constructs such as lock/unlock or signal/wait
into their code. Implicit synchronization, on the other hand, is
more or less hidden. It is included in library or language
constructs whose main purpose is not synchronization. For
instance, parallel loops typically include a barrier synchro-
nization at the end. Fig. 1 illustrates this case for OpenMP. A
parallel loop computes a result to be displayed later. To avoid
that the main thread runs ahead and displays an incomplete
result, an implicit barrier blocks this thread until all worker
threads have completed the parallel loop. The barrier is
inserted by the compiler. The advantage of implicit synchro-
nization is that programmers can not forget it, thus
preventing a source of errors.

The objective of concurrency libraries is to simplify parallel
programming by providing high-level constructs such as data
parallel loops, pipelines, master/worker, or queues. All of
these provide built-in, implicit synchronization. As an
example, consider Threading Building Blocks (TBB) [7]. TBB
is an open source concurrency library. It encourages the
creation of parallel applications through task and pipeline
parallelism. A mechanism called task stealing mitigates load
imbalance. TBB can be combined with other concurrency
libraries such as OpenMP. Its constructs typically provide
implicit synchronization. Fig. 2 shows an example of a 3-stage
pipeline. The stages are called filters. The first filter reads an
input file, while the second capitalizes all letters, and the last
stage writes the data to an output file. The code in Fig. 3
implements this pipeline. No explicit synchronization opera-
tions are needed.

High-level concurrency constructs abstract away low-
level synchronization primitives, so programmers make
fewer mistakes [13]. However, a data race detector must be
able to identify all locations where synchronization occurs,
because otherwise it produces too many false warnings.

2.1 Characteristic Code Pattern
A simple method to help a detector would be to annotate
both explicit and implicit synchronization operations.
However, this method requires programmer intervention,
is intrusive, error prone, and forces recompilation. An
automatic identification method is highly preferred.

Prior research [14], [15], [10], and [12] observed that
high-level synchronization constructs use synchronization

int i, j;

#pragma omp parallel for
for (i=0; i<n; i++)
for (j=0; i<m; j++)
ali]lj] = compute(i,j);

display(a);

2607

Input file

filter 1

read a block of
characters

filter 2
(lower->upper)

filter 3

output file
Fig. 2. Example for parallelization: File transformation with a 3-stage
pipeline.

primitives provided by threading APIs and the operating
systems. For example, the debuggers Helgrind [16] and
DRD [17] intercept low-level POSIX calls and thereby
capture high-level constructs built from them as well.
However, different libraries may use different primitives.
For instance, both Helgrind and DRD fail on OpenMP [12].
Moreover, programmers sometimes write explicit wait
loops that do nothing but wait for a variable to change. The
wait loop uses no synchronization primitive whatsoever,
but must still be identified by a race detector as a location
where an ordering relation is enforced.

It turns out that synchronization primitives rely, in the
end, on a simple, characteristic code pattern. This has been
confirmed in publications [18], [19], [20], [14], [15], and [12],
which studied the implementations of locks, conditions
variables (signal/wait), barriers, and semaphores, as well
as ad hoc synchronization. The pattern is as follows:

1. It consists of an indicator variable, one or more loops
that wait for the variable to assume an expected value,
and one or more locations in the program that write
the expected value into the variable. We call the
loops spinning loops and the corresponding write
operations counterpart writes.

2. A spinning loop terminates when it detects the
expected value in the indicator variable.

// Create the pipeline
tbb :: pipeline pipeline;

// produce input filter

// read input file, generate stream
MylInputFilter input_filter(input_file);
pipeline .add_filter (input_filter);

// process filter

// transformation: up casing letters
MyTransformFilter transform_filter;
pipeline.add_filter (transform_filter);

// output filter for output file
MyOutputFilter output_filter(output_file);
pipeline . add_filter (output_filter);

// execute pipeline
pipeline .run(MylnputFilter:: n_buffer);
pipeline . clear ();

Fig. 1. Implicit barrier synchronization used in OpenMP.

Fig. 3. Three-stage pipeline implemented with TBB.

2608
lock (int *mutex)
unlock (int *mutex)
while (! test_and_set {
(mutex ,0,1)) smutex = 0;
{/«do nothing =/} }
}

(a) (b)

Fig. 4. Implementation of synchronization primitives lock() and unlock().
(a) Lock() implemented as spinning loop and atomic write. (b) Counter-
part write operation.

3. A spinning loop either tests or atomically tests and sets
the indicator variable (see Section 2.2). The spinning
loop does not write the indicator variable otherwise.

Fig. 4 shows how this pattern is used in the implementation
of the lock/unlock primitives of the POSIX API. The lock()
operation is implemented as a busy wait. For the rest of this
paper, it is irrelevant whether spinning loops are imple-
mented as busy waits or give up the processor.

2.2 Detection Algorithm
Helgrind™ identifies spinning loops and counterpart write
operations on the fly. Interestingly, this is enough to detect
synchronization operations.

2.2.1 Synchronization Primitives

Table 1 shows the protocols observed by several synchro-
nization primitives (the primitives are common and could
be provided by various concurrency libraries). Both the
primitives lock() and sem_wait() include a spinning loop
with an (atomic) test-and-set operation on an indicator
variable. The loop changes the indicator variable to a
value other than the expected value as soon as the
expected value has been encountered (see Fig. 4a for the
loop in lock() primitive). This protocol (also implemen-
table with a compare-and-swap instruction) assures that
only a single thread can continue past its spinning loop for
every write of the expected value. The unlock() operation
contains nothing but the counterpart write (see Fig. 4b).
Lock() and unlock() pairs on the same indicator variable
are customarily used to implement mutual exclusion and
monitors. An important observation for later is that a
lock() and unlock() pair is completed in sequence by the
same thread.

When a thread needs to send a signal to a different,
waiting thread, cond_send() and cond_wait() are used. The
cond_wait() primitive also uses a spinning loop, but only
tests the indicator variable, without resetting it. This
protocol is sufficient if cond_wait() is not used repeatedly
(as inside a loop), or is reset elsewhere. A cond_send)() is
simply a counterpart write into the shared indicator
variable; it can signal one or several spinning threads.

The semaphore operations sem_wait() and sem_post()
can be used for both signaling and mutual exclusion. The
sem_wait() operation first enters a spinning loop on an
indicator variable to get exclusive access to the semaphore
data structure. This data structure includes a counter,
which sem_wait() decrements. If the counter variable turns
negative, the executing thread is placed on a waiting list.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

TABLE 1
Protocols of Low Level Synchronization Primitives

spinning loop counterpart write
lock() test&set -
unlock() - set
cond_wait() test -
cond_signal() - set
sem_wait() test&set set
sem_post() test&set set
barrier_wait();.1..n—1 test&set(go;) set(present;)
barrier_wait(),, test&set(presenty . n,—1) set(go1..n—1)
ad hoc synchronization test set

Finally, sem_wait() resets the indicator variable to allow
other threads access to the semaphore. Sem_post() also
needs exclusive access to the semaphore data structure.
Hence, both semaphore operations are wrapped in a
spinning loop and a counterpart write on the same
indicator variable.

Barriers are somewhat more complicated, but also
work with spinning loops. Each thread has two indicator
variables: present; and go;. When checking into a barrier,
thread i writes present; to indicate that it is inside the
barrier and then immediately starts spinning on go; using
test-and-set. A designated thread, say n, spins on all
variables present;, one after the other, with test-and-set.
When it continues, all threads have checked into the
barrier, and all variables in array present have been reset.
At this point, thread n releases the waiting threads by
writing all the variables go;. A simplification would be to
use a single variable go instead of an array (and no reset),
but this implies that the barrier cannot be used in a cyclic
fashion. Barrier synchronization can also be implemented
with lock() and unlock(), which themselves use spinning
loops. For large sets of processors, the loops for waiting
and releasing can be accelerated by using fan-in and fan-
out trees, but the core is always the spinning loop.

2.2.2 Ad hoc Synchronizations

So far we have discussed synchronization primitives as
provided by libraries. However, users may define their
own synchronization operations in an ad hoc way. In a
study of concurrent programs (Apache, MySQL, Mozilla,
and others) Xiong et al. [10] found that programs contain a
surprising number of ad hoc synchronizations (6-83 ad hoc
synchronizations in each program studied). Also in a former
study [12] we showed ad hoc synchronizations occur
frequently. For instance, we found that eight of the 13
PARSEC benchmarks [21] contain various ad hoc synchro-
nizations. Hence, race detectors must identify ad hoc
synchronizations to avoid false positives. Our analysis
showed that ad hoc synchronization operations also follow
the pattern of spinning loop with counterpart write (for
details see [12]). If the race detector can identify this pattern,
it can handle ad hoc synchronization in the same manner as
standard synchronization primitives and implicit synchro-
nization embedded in high-level language constructs.

The distinguishing properties of a spinning loop are that
it repeatedly tests the same location without modifying it,
except perhaps in a test-and-set instruction (which changes
it only if the loop terminates). In practice, spinning loops

JANNESARI AND TICHY: LIBRARY-INDEPENDENT DATA RACE DETECTION

int trueSpin(int * mutex)
{
int offset;
while (1) {
offset=0;
if (mutex[offset]) break;
}
¥

Fig. 5. Tricky spinning loop used for ad hoc synchronization.

are short. However, they take on a variety of forms. Fig. 5
shows an example of an ad hoc synchronization taken from
the Parsec benchmark suit [22]. At first glance, the loop
appears to be infinite. The analysis must identify the
terminating break in the conditional statement. A second
difficulty is that the variable tested is an array element.
To make sure that the same element is tested in every
iteration, a dependency analysis is needed. In this case
the dependency graph is loop free, therefore the same
location is tested in each iteration and the spinning loop
property is met.

Helgrind™ identifies spinning loops in machine code on
the fly. It uses dynamic data and control dependency
graphs spanning multiple blocks (look-ahead technique),
including calls. Hence, spinning loops are detected even if
spread out over several basic blocks (concatenation of
referenced basic blocks). Complex loops with multiple
entry and exit points are handled properly by performing
an accurate data flow analysis using techniques such as
normalization of dependency graphs, distinguishing direct
and indirect data dependencies and resolving copy (con-
stant) propagation. The indicator variables belonging to the
loops are marked and instrumented. Helgrind™ does not
search the code for counterpart writes, but waits for them
to occur dynamically. A counterpart write is the first write
operation on an indicator variable outside the spinning
loop. As soon as a counterpart write into an indicator
variable occurs, the write operation is intercepted, the
spinning loop and counterpart write are paired, and a
happens-before edge (—n, edge) is established. The
happens-before relation specifies a temporal ordering
among code segments and is used in the race detector to
rule out potential race conditions.

Since Helgrind* is a hybrid race detector that works with
both the happens-before relation and the lockset algorithm,
it must detect lock() /unlock() pairs as well, but in a library-
independent manner. Detection is based on the fact that
lock()/unlock() pairs are executed by the same thread.
Furthermore, the spinning loop of the lock operation must
contain a test-and-set (or compare-and-swap) instruction.
Thus, when a write occurs to an indicator variable from a
spinning loop, Helgrind®™ simply records the thread iden-
tifier. When a succeeding counterpart write occurs, it
checks whether the thread identifiers are identical, and if
so, the indicator variable is marked as a lock. This lock
protects the variables accessed between the spinning loop
and the counterpart write. The race detector uses this
information to determine whether the variables are con-
sistently protected throughout the program. One could
work without lockset analysis, but our results show that a
hybrid approach is more accurate. An example where

2609

lockset analysis beats a pure happens-before detector is
given in Section 4.2.

2.2.3 Dealing with Semaphores

Semaphores require extra consideration. Since they may be
used for either signaling or locking, Helgrind™ must distin-
guish the two uses (one identifying a —y;, edge, the other a
lock). Furthermore, Helgrind " is library independent, so we
cannot use the library names of the semaphore operations—
they may differ from library to library. Therefore, the
detection algorithm has to work on the instruction level.
Luckily, the above technique can be extended to work with
semaphores. Recall that each semaphore operation is itself
wrapped in a spinning loop and a counterpart write, or a
lock()/unlock() pair (which is the same). At first, this fact
only informs Helgrind* that the access to the semaphore data
itself is properly protected. What we need is a connection
between the code segments for sem_wait() and sem_post()
bracketing a critical section. As with lock() and unlock(), the
two semaphore operations will be executed in sequence by
the same thread in the case of a lock. When sem_wait() is
executed, its last action will be a counterpart write into the
indicator variable that protects the semaphore. At this point,
we record the identity of the executing thread. Other threads
may also try the sem_wait() operation, but they will be
blocked if the semaphore counter was properly initialized for
alock. Eventually, the original thread completes the critical
section and executes sem_post(). This means the thread
enters another spinning loop and leaves it with a
successful test-and-set execution. This write operation is
caught by Helgrind®. It checks whether the thread
identifier is the same as the one recorded by the previous
counterpart write (which occurred when the thread left the
previous sem_wait()), and if so, it has detected a lock. In
essence, the indicator variable of the semaphore is
protecting not only the semaphore data structure itself,
but also the critical section between the semaphore
operations. If the semaphore is used for signaling instead,
the thread identifiers will fail to match and therefore no
lock will be recorded (other than for the semaphore data
itself). In that case, a —y1, edge is added.

Of course, the detection algorithm depends entirely on
the presence of spinning loops. If other means of synchro-
nization are used, such as hardware interlocks (preventing
race conditions by hardware support), the race detector
could be extended to detect these patterns as well. Our
benchmark programs did not use techniques other than
spinning loops, but in a variety of forms.

3 IMPLEMENTATION

We use our race detector Helgrind® as the basis of our
implementation. Helgrind® is an open source tool
implemented on top of a dynamic binary instrumenta-
tion tool called Valgrind [24], [23]. Valgrind is a frame-
work for instrumenting binary code. It disassembles and
re-synthesizes code dynamically during just-in-time in-
strumentation. The framework translates binary code
into a platform-independent intermediate representation
(IR). Our tool instruments the IR and hands it back to

2610

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10,

OCTOBER 2014

On Event indicator variable spinV ar is written by Thread tid
| handleWriteAccess(spinVar, tid)

Function handleWriteAccess (spinVar, tid)
if inSpinLoop() then

| spinVarlastSpinWriter =0 // no lock
else

end
else
spinVar.lastReleaseWriter = tid

spinVar.wasReleasedBefore = True
else // cannot be a lock

| spinVar.wasReleasedBefore = False
end

end

On Event Thread tid leaves spin loop

end

if (spinVar.last ReleaseWriter # 0) & (lspinVar.wasReleasedBefore) then
// last write access outside of a loop does not belong to any lock

| spinVarlastSpinWriter = tid // try to acquire the lock

if Thread tid holds Lock spinVar then // writing thread currently holding the lock

registerUnlockOperation(tid, spinVar) // release of the lock

foreach spinVar € {indicator variables spinV ar/spinV ar.lastSpinWriter = tid} do
| registerLockOperation(tid, spinVar) // Thread tid holding now the lock spinVar

Algorithm 1: Simplified algorithm for implementing lock primitives detection.

Valgrind, which re-synthesizes machine code from it and
then executes it.

3.1 Spinning Loops and Indicator Variables
Roughly speaking, detection of spinning loops and indica-
tor variables works as follows:

e Search the control flow graph for loops that span a
maximum of seven basic blocks.”

e Track the data dependencies of each variable
within the basic blocks and construct a data
dependency table.

e A variable is an indicator variable if it is tested but
not written inside the loop, except possibly in a test-
and-set or a compare-and-swap instruction.

Helgrind™ considers all loops (branches) at the IR level.
Function calls are transformed into regular branches and
their code is inlined until at most seven blocks have
accumulated. Several steps for optimizing and simplifying
the dependency graphs are performed. Normalization of
dependency graphs and optimization operations such as
resolving copy/constant propagation are done on the fly.
Distinguishing direct and indirect dependencies and
concatenations of referenced basic blocks enable a precise
and consistent analysis.

During the instrumentation, the instructions in the
spinning loop and the indicator variable are instrumented.
During runtime, if a counterpart write occurs on any indicator
variable, the write is captured and used for establishing a
happens-before relation or updating a lockset. The algorithm
distinguishes between signals and locks as discussed earlier.

2. We experimented with different numbers; seven blocks gave the
best detection results without undue slowdown.

Algorithm 1 implements a simplified version of the
detection of lock primitives. For each indicator variable
spinVar we store the following infromation:

o lastSpinWriter: the ID of the last thread (tid) writing
the indicator inside a spin loop.

o lastReleasedWriter: the ID of the last thread writing
the indicator outside of a spin loop.

e wasReleasedBe fore: a boolean value which indi-
cates if the last thread writing the indicator outside
of a spin loop held the associated lock. The variable
wasReleasedBe fore indicates that spinVar is used
for lock operation.

We record the lastSpinWriter of the indicator inside the
spin loop, if there is no write operation outside of the spin
loop on the indicator by another thread. In other words, no
write operation on the indicator outside of the loop is
allowed, except by the thread currently holding the
associated lock. In case of write operation outside of the
spin loop the wasReleasedBe fore is set and the information
is used for the next lock operation again. When leaving the
spin loop, the written indicators inside the loop are
registered as acquired locks by the thread. If it is not a
matter of a lock operation, but a barrier or a condition
variable, no write operation within the loop is expected and
consequently, the algorithm does not designate the loop as
a lock operation. For the sake of simplicity, the algorithm
does not depict the distinction between read/write locks
and semaphores.

To maintain state information on indicator and other
variables, we use shadow memory [25]. Shadow memory
stores for each memory location the information needed
for runtime analysis, e.g., its state, thread ID, and other
information.

JANNESARI AND TICHY: LIBRARY-INDEPENDENT DATA RACE DETECTION 2611
TABLE 2
Results on the Test Suite that Contains 131 Programs in Pthread, 15 Programs in OpenMP, and 26 Programs in TBB
library-independent library-dependent
Results Helgrind ™ Intel TC | Helgrind DRD
Pthread | OpenMP | TBB Pthread | Pthread | Pthread
True Positives (TP) 34 3 6 32 25 20
True Negatives (TN) 73 11 16 65 36 67
False Positives (FP) (unidenti- 13 0 2 11 54 20
fied synchronizations)
False Negatives (FN) (uniden- 11 0 1 23 16 24
tified races)
Failed test cases (FP+FN) 24 0 3 34 70 44
Passed test cases (TP+TN) 107 15 23 97 61 87
Sum of all test cases 131 15 26 131 131 131

3.2 Data Race Detection

Helgrind™ is a hybrid race detector, i.e., it uses a combina-
tion of lockset algorithm and happens-before analysis
(—up). The main idea is to apply the happens-before
analysis whenever the lockset algorithm indicates a poten-
tial data race. A memory state machine maintains the state
of each (non-indicator) variable in shadow memory.
Through the state machine, Helgrind® can distinguish
between parallel and ordered accesses to shared variables.

The indicator variables of spinning loops are not subject
to the state machine: Accesses to them cause changes in
locksets or add —y,, edges, which are then used in the state
machine for regular variables. See [26] and [11] for more
details on the state machine and the race detection
algorithm. These earlier papers required information about
synchronization primitives to drive the state machine. By
detecting spinning loops, counterpart writes, and the
distinction between locking and signaling, knowledge
about synchronization primitives is no longer needed in
the race detector.

4 EVALUATION AND RESULTS

We evaluated Helgrind™ with a number of benchmarks and
compared the results with other race detectors. Helgrind*
correctly identified synchronization operations from vari-
ous concurrency libraries and detected true data races,
while keeping the number of false positives and false
negatives low. A true data race affects the behavior and
the result of the program.

4.1 Experimental Setup

Our evaluation was conducted on a 2x Intel XEON E5320
Quadcore at 1.86 GHz, 8 GB RAM, running Linux Ubuntu
x64. Programs were compiled with gcc 4.2.3. All measure-
ments and reported values are averages over five execu-
tions. No source code annotations were used. The 64-bit
version of Valgrind 3.4.1 was the basis for Helgrind*. We
compared Helgrind" with other existing race detectors, i.e.
the original Helgrind [16], DRD [17] and Intel Thread
Checker [27]. Despite the lack of information about syn-
chronization primitives, our results are acceptable and in
some cases even better than those of existing race detectors.

4.2 Small Test Programs

Data-race-test [28] is a benchmark suite for race detectors
with 120 short programs (called test cases). For each test

case, it is specified whether it includes a race or it is a race-
free program. The test cases implement various scenarios,
including tricky situations that are difficult to analyze. All
test cases are implemented in C/C++ using the POSIX API
(Pthread) synchronization primitives or some ad hoc
synchronization. The programs run with varying numbers
of threads. No annotations were provided. We added 11
new and difficult test cases. Furthermore, where possible,
we ported test cases to OpenMP and TBB, giving us 15 and
26 extra cases, resp. These test cases are used to check
synchronization detection in additional libraries. Overall,
we have 131 test cases implemented with Pthread, 15 test
cases implemented in OpenMP, and 26 in TBB.

Table 2 shows the results. Helgrind® does not require
any information about concurrency libraries and handles
test cases written in Pthread, OpenMP, and TBB. The
library-dependent tools Intel TC, original Helgrind, and
DRD only handle Pthread test cases.

For Pthread, Helgrind" fails on only 24 out of 131 cases
(false positives and false negatives), while handling 107
cases correctly (true positives and true negatives).
Helgrind™ beats all other contenders, although it knows
nothing about the Pthread library. Part of the reason is that
the library-dependent tools are unaware of ad hoc synchro-
nization or complex constructions such as wrappers,
templates, and function calls in combination with Pthread.
Helgrind® handles spinning loops even if they involve
templates and function calls. In such situations, the
spinning loop spans multiple blocks. We varied the
number of blocks analyzed and obtained the best results
with seven basic blocks.

Intel TC, a commercial tool, produces only 11 false
positives, which is the lowest false positive rate among
the tools. However, it misses 23 races, which is a high
rate of false negatives. The second library-dependent tool
is Helgrind 3.4.1 [16] and the third is DRD 3.4.1 [17], a
happens-before race detector.

For OpenMP, Helgrind* produced no false positives or
falsenegatives, and only three of the TBB cases were handled
incorrectly. The other tools, if applied to OpenMP and TBB
cases, overwhelm the user with false warnings, as they
have no clue about the synchronization primitives present.

A simple case correctly handled by both Helgrind* and
Intel TC is shown in Fig. 6. Pure happens-before race
detectors such as DRD may not identify the data race in this
example. The reason is that a —y,, edge is established from
the left unlock() to the right lock(). This edge implies that

2612

y = y+1; lock (m);

lock (m); X = xX+1;
X = x+1; unlock (m);

unlock (m); y =y—1;

Fig. 6. Data race on y missed by happens-before analysis but detected
by Helgrind ™.

the left access to variable y occurs before the right access.
However, this is incorrect. The two accesses are actually
not ordered. Consider what happens when the right
unlock() completes first. This is an example where lockset
analysis improves detection accuracy. At least three such
cases cause false negatives with Helgrind and DRD.

Helgrind® shows some false positives and false negatives
(missed data races). Some of the false positives are caused by
tricky and complex forms of ad hoc synchronization. However,
most of the false positives produced by other race detectors
are removed by Helgrind ™ (e.g., 25 false positives produced by
Helgrind are removed because of correct handling of ad hoc
synchronizations and implicit synchronizations).

An example of a false negative is given in Fig. 7. The
loop body applies pointer arithmetic, masking the modi-
fication of the loop variable (it writes the second byte of
lock). However, a loop that modifies its own termination
condition is not a spinning loop. Since our algorithm does
not handle variable sizes, it mistakenly identifies this loop
as a spinning loop and introduces a —1;, edge where there
is none. As a result, the detector misses a data race. Taking
variable sizes into account is possible, but causes overhead.

Another example of a false negative is given in Fig. 8.
Race detectors are not able to identify the data race in this
example. The reason is that x is protected by lock and
unlock or a —y;, edge is established between unlock and
lock. However, this is insufficient. Both threads assign
different values to x and the two accesses are not actually
ordered. This is an example where order violation
happens. If both threads increment x by one, this example
does not include a race and race detectors can handle it
correctly.

4.3 Real World Applications

The second benchmark suite is PARSEC 2.1 [21]. It consists
of thirteen diverse multi-threaded programs from different
domains. Some of the benchmarks are available in multiple
implementations, using either Pthread, TBB, or OpenMP
[29]. Table 3 summarizes the suite (LOC provides lines of
code when implemented with Pthread, except in the case of
freqmine which is implemented with OpenMP). Eight of the
thirteen applications use ad hoc synchronization. Fregmine
includes 131 ad hoc synchronization constructs [12]. We ran

int lock=0;
void falseSpin() {
do {
char c=1;
((charx)&lock)[1l]=c; // 2nd byte written
//within loop
} while (! lock);

¥

Fig. 7. Problem with pointer arithmetic.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10,

OCTOBER 2014

lock (m); lock (m);
X = 2; x = 3;
unlock (m); unlock (m);

Fig. 8. Problem with order violation.

the benchmarks with two threads per application. Luet al. [30]
report that most concurrency bugs manifest themselves with
only two threads. Furthermore, Helgrind* schedules threads
in a more fine-grained way than operating systems. Conse-
quently, we assume that many races can be observed with two
threads.

Because of the large memory overhead and computa-
tional cost, we did not use the native input set. Instead, we
used the simsmall or simmedium inputs and ran each
program five times, averaging the results. The authors of
the PARSEC benchmarks claim the programs to be race
free, but we cannot be absolutely sure that they are. In some
cases, we contacted the authors.

Table 4 shows the results of the various race detectors.
The numbers reported are distinct program contexts that
produce at least one data race warning. For simplicity, we
will simply call these contexts warnings, without saying
how many warnings each context actually produced.

The first two applications in the table are implemented
with three concurrency libraries (Pthread, OpenMP, TBB)
each. Blackscholes produces no warnings at all, regardless of
tool and library. For bodytrack, Helgrind™ generates four
warnings (in all three variants). The application uses read-
write locks and ad hoc synchronization. On close inspection,
all four warnings turned out to be false positives. All warnings
produced by the other tools are also false positives.

For canneal, dedup, facesim, ferret, fluidanimate,
raytrace, and swaptions, Helgrind" generates no warnings.
The benchmark fregmine is implemented with OpenMP.
Helgrind" catches two (intentional) races and again produces
no false warnings. Overall, twelve out of twenty variants
produce no warnings. However, the other tools produce
hundreds or thousands of false warnings.

The benchmark vips uses the library Glib [31] and
produces three false warnings under Helgrind®. Glib
implements threads and primitives such as mutexes, etc.
The thread support in Glib is based upon Pthread or win32
threads; a Pthread version was used here.

TABLE 3
Implementation Variants of the PARSEC 2.1 Benchmarks

Concurrency library used

Program LOC | pihread | OpenMP | TBB
blackscholes 812 v/ V4 V4
bodytrack 10,279 IV V4 N
canneal 4,029 IV - -
dedup 3680 |/ - -
facesim 29,310 V4 -

ferret 9,735 vV - -
fluidanimate 1,391 vV - vV
raytrace 13,302 N - -
swaptions 1,494 N - N
freqmine 2,706 - N4 -
streamcluster | 1,255 V4 - V4
vips 3,228 V4 - -
X264 20393 |/ - -

JANNESARI AND TICHY: LIBRARY-INDEPENDENT DATA RACE DETECTION

2613

TABLE 4
Number of Race Contexts Reported by Tools

Program Helgrind™ (library-independent) || library-dependent Tools (Pthread-dependent)
Pthread | OpenMP TBB Intel TC | Helgrind DRD
blackscholes 0 0 0 0 0 0
bodytrack 4 4 4 13 51 31
canneal 0 - - 4 1 0
dedup 0 - - 0 3 0
facesim 0 - - 0 128 1000
ferret 0 - - 0 111 246
fluidanimate 0 - 0 0 58 0
raytrace 0 - - 0 117 1000
swaptions 0 - 0 0 0 0
freqmine - 2 - 1063 225 1000
streamcluster 2 - 2 2 19 1000
vips 3 - - 0 69 838
x264 12 - - 1 734 1000

Streamcluster is implemented with two concurrency
libraries: Pthread and TBB. Each variant produces two
warnings. We can only confirm that one of them is a true
positive. A race happens between initializing and using an
array. For x264, our tool produces twelve false warnings.

The right half of Table 4 lists the number of warnings
produced by the library-dependent tools. In case of
freqmine, which is implemented in OpenMP, Intel TC
produces 1063 false warnings, Helgrind 225, and DRD
more than 1000 (DRD shows the first 1000 warnings and
suppresses the rest). This is because these tools do not support
OpenMP. But even in the Pthread samples, the number of
warnings is often significantly higher. For instance, in the case
of raytrace, DRD and Helgrind can not identify synchroni-
zation primitives within a C++ wrapper. ad hoc synchroni-
zation is also a reason for false positives.

Three packages, i.e. dedup, raytrace and facesim produce
no warnings with Intel TC, but show extremely high memory
consumption. In eight cases, Helgrind* and Intel TC produce
identical results. In three cases, i.e., bodytrack, canneal, and
freqmine, Helgrind® generates fewer false positives. X264
might not have been instrumented properly by Intel TC, since
it shows the same execution time and memory consumption
before and after instrumentation.

In summary, even though Helgrind" does not rely on
information about synchronization primitives, it is capable
of identifying a broad range of synchronization operations
in real applications (including ad hoc and implicit synchro-
nizations). Detecting these operations is essential for any
race detector, because otherwise a large number of false
warnings is produced. Thus, Helgrind" can continue to be
used profitably when switching concurrency and synchro-
nization libraries.

4.4 Performance

We measured memory and runtime requirements of
Helgrind* on the PARSEC benchmark suite. The values
reported are averages over five executions with two
threads. Because of the large overhead, we used simulation
inputs and applied the simsmall for all benchmarks except
for streamcluster and swaptions. For the latter two we used
simmedium, as the runtime with simsmall was too short.
PARSEC inputs use a combination of linear and complex
scaling to derive the simulation input sets from native

inputs. For this reason, the differences between native
inputs and simulation inputs are relatively small and
simulation inputs are suitable for performance measure-
ments [21].

Generally, memory consumption is high. The race
detection algorithm uses a large amount of shadow
memory. We are planning to optimize memory consump-
tion and compress shadow values using techniques
suggested by M. Kimet al. [32]. For finding synchronization
constructs, large code blocks (super blocks) should be
disassembled and processed. This process can affect
memory consumption, especially if the number of analyzed
basic blocks during spinning loop detection increases.
Differentiating lock operations from signals does not
require much memory.

Fig. 9a depicts average memory consumption We
measured the memory usage of instrumented code by
Helgrind® and other tools. Out of 13 applications, twelve
use Pthread and one (fregmine) uses OpenMP. Intel TC
and Helgrind™ typically use more memory than the other
tools. In some case, e.g., facsim or raytrace, Intel TC
shows drastically higher memory consumption. However,
in most cases the memory overhead of Helgrind" is less
than that of Intel TC, so that applications with significant
memory requirements are testable. Helgrind and DRD
require little memory due to their simple algorithms.

The normalized time measurements are shown in Fig. 9b
(Helgrind™ is considered as the reference with the unit
normalized value). The instrumented code slows applica-
tions down by a factor of ten to more than 100. The overhead
for spinning loop detection is substantial, while distinguish-
inglocks from signals does not cost significantly. There is small
overhead of Helgrind® over Intel TC for some applications.
Facsim, canneal and raytrace slow down Helgrind" signif-
icantly. DRD runs slowly on fluidanimate and dedup and
fast on facsim (less than 0.1 of the normalized unit). In other
cases, the detectors deliver slightly different execution times.

Overall, time and space overheads are bearable for real
world applications. For practical uses, overhead reductions
are necessary and possible.

5 RELATED WORK

A number of tools for concurrency bug detection have
been developed [33], [34], [35], and [36]. These tools

2614

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 10, OCTOBER 2014

7000
6000
5000
4000
3000

T T T 1

Helgrind™*
Intel TC n—
Helgrind ==

DRD wzzzzzza

2000

1600
1400
1200
1000

Average Memory Consumption [MB]
N A O
o O © O

o O O © o©o
T T T T T T T

)
§ |
\g

———)

Intel TC m—
Helgrind ===

D wzzzzma

T

7| 7

: e 0.
G T w 01 A EONRRHEO

—_

Normalized Execution Time

i
2

L L

b L o

L L b

O W

o

6y b) R, V7 8,
ke, Dy s, e Sy,
Cho, 0 " N

S

L Y,
I, ’/bn %, " s
s

+ ¢! % S &
) <6q e, %y, 7%, Yt
i, '/ ey, Co
U Z/S{e/_

(b)

Fig. 9. Memory consumption and execution time on PARSEC. (a) Memory consumption. (b) Normalized execution times having Helgrind* as the

reference.

typically detect the synchronization constructs defined by
a single, specific concurrency library. They do not work
with other libraries and also fail to detect programmer-
defined, ad hoc synchronization constructs. Our approach
is not dependent on a specific library and can identify ad
hoc synchronization as well as high-level and implicit
synchronization constructs.

A few studies discuss high-level synchronization errors,
i.e., synchronization anomalies that need a higher abstrac-
tion level to detect them. Arthoet al. [37] provide a
definition for high-level data races and discuss non-atomic
protection faults. Reference [38] extends the definition and
discusses two types of high-level error scenarios with a
static framework for detecting situations where such
synchronization anomalies can manifest themselves. Our
own research [39] detects data races on correlated variables
but has high overhead in space and time.

Some recent work deals with ad hoc synchronization.
The approach by Xiong et al. [10] requires automatic source
code annotation of ad hoc synchronization and uses static
analysis. This method suffers from the general drawbacks
of static analysis, e.g., state explosion and expensive alias
analysis. Code annotations are intrusive and presume
availability of source code. Our approach requires no
annotations and works on object code. T. Li et al. [40]
propose special hardware for detecting spinning loops
dynamically. To be detectable, the loops have to be simple,
i.e., have a single exit that is controlled directly by a

synchronization variable. We deal with complex loops
spanning multiple blocks. Tian et al. [15] identifies spinning
loops in software. Tian et al. use a simple heuristic: Any
loop with a control variable that does not change for three
iterations is considered a spinning loop. However, this
approach may generate false positives if the spinning loop
is executed less than three times or not at all. In ad hoc
synchronization, programmers expect their programs to
actually wait in these loops rarely. Furthermore, the
method may falsely identify loops as spinning. Conse-
quently, ordering relations are falsely assumed to exist
which masks races.

6 CONCLUSION

An approach for detecting data races independent of
concurrency libraries was presented. The approach dy-
namically identifies synchronization constructs based on a
characteristic code pattern. By examining diverse bench-
marks, among them thirteen full applications, we demon-
strated that our approach is able to find data races in
programs using a wide range of concurrency libraries.
Various synchronization primitives as well as ad hoc
synchronization constructs were detected, thereby improv-
ing the accuracy of the race detector. With this approach,
race detectors do not need to be adapted to evolving
concurrency libraries. There is ample opportunity to
reduce space and time overhead of the race detector, for

JANNESARI AND TICHY: LIBRARY-INDEPENDENT DATA RACE DETECTION

example by encoding shadow memory in a more space-
efficient way. Finding races involving correlated variables
is another direction for future research.

ACKNOWLEDGMENT

The authors thank C. Schmaltz from Karlsruhe Institute of
Technology for his programming support and Felix Wolf
from RWTH Aachen University for providing comments.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

(11]

(12]

(13]

(14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

M. Frigo, C.E. Leiserson, and K.H. Randall. (1998, May). The
Implementation of the Cilk-5 Multithreaded Language. ACM
SIGPLAN Notices [Online]. 33(5), pp. 212-223. Available: http://
doi.acm.org/10.1145/277652.277725

R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. San Francisco, CA,
USA: Morgan Kaufmann, 2001.

M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L.P. Chew, “Optimistic Parallelism Requires Abstractions,”
ACM SIGPLAN Notices, vol. 42, no. 6, pp. 211-222, June 2007.

J.E. Stone, D. Gohara, and G. Shi, “Opencl: A Parallel Program-
ming Standard for Heterogeneous Computing Systems,”” Com-
put. Sci. Eng., vol. 12, no. 3, pp. 66-73, May/June 2010.

M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A.S. Meli, A.A. Lamb,
C. Leger,]. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe, “A
Stream Compiler for Communication-Exposed Architectures,”
ACM SIGOPS Oper. Syst. Rev., vol. 36, no. 5, pp. 291-303, Dec. 2002.
V.A. Saraswat, V. Sarkar, and C. von Praun, ““X10: Concurrent
Programming for Modern Architectures,” in Proc. 12th ACM
SIGPLAN Symp. PPoPP, 2007, pp. 271-271.

C.Pheatt. (1998, May). Intel Threading Building Blocks. J. Comput.
Sci. Coll. [Online]. 23(4), p. 298. Available: http://dl.acm.org/
citation.cfm?id=1352079.1352134

F. Otto, V. Pankratius, and W.F. Tichy, ““High-Level Multi-
core Programming With XJava,” in Proc. 31st ICSE-Companion
Vol., May 2009.

M. Harris, ““Many-Core GPU Computing with NVIDIA CUDA,”
in Proc. 22nd Annu. ICS, 2008, p. 1.

W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, ““Ad Hoc
Synchronization Considered Harmful,” in Proc. 9th USENIX
Conf. OSDI, 2010, pp. 1-8.

A. Jannesari, K. Bao, V. Pankratius, and W.F. Tichy, ““Helgrind+:
An Efficient Dynamic Race Detector,” in Proc. IEEE IPDPS, 2009,
pp- 1-13.

A.Jannesari and W. Tichy, “Identifying Ad-Hoc Synchronization
for Enhanced Race Detection,”” in Proc. IEEE IPDPS, Apr. 2010,
pp- 1-10.

S.V. Adve, A.L. Cox, S. Dwarkadas, H. Dwarkadas, and
W. Zwaenepoel, “Replacing Locks by Higher-Level Primitives,”
Dept. Comput. Sci., Rice Univ., Houston, TX, USA, Tech. Rep., 1994.
B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar, ““Healing Data
Races On-The-Fly,” in Proc. ACM Workshop PADTAD, 2007,
pp- 54-64.

C. Tian, V. Nagarajan, R. Gupta, and S. Tallam, “Dynamic
Recognition of Synchronization Operations for Improved Data
Race Detection,” in Proc. ISSTA, 2008, pp. 143-154.

Helgrind: A Data-Race Detector, Valgrind-Project, 2009. [Online].
Available: http:/ /valgrind.org/docs/manual /hg-manual.html
Drd: A Thread Error Detector, Valgrind-Project, 2009. [Online].
Available: http:/ /valgrind.org/docs/manual /drd-manual html

P. Magnusson, A. Landin, and E. Hagersten, “Queue Locks on
Cache Coherent Multiprocessors,” in Proc. 8th Int’'l Symp. Parallel
Process., 1994, pp. 165-171.

J.M. Mellor-Crummey and M.L. Scott, *Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors,” ACM
Trans. Comput. Syst., vol. 9, no. 1, pp. 21-65, Feb. 1991.

R. Gupta, “The Fuzzy Barrier: A Mechanism for High Speed
Synchronization of Processors,” SIGARCH Comput. Architect.
News, vol. 17, no. 2, pp. 54-63, Apr. 1989.

C. Bienia and K. Li, “Parsec 2.0: A New Benchmark Suite for
Chip-Multiprocessors,” in Proc. 5th Annu. Workshop Model.,
Benchmarking Simul., June 2009, pp. 1-9.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

2615

C. Bienia, S. Kumar, J.P. Singh, and K. Li, ““The Parsec Benchmark
Suite: Characterization and Architectural Implications,”
Princeton Univ., Princeton, NJ, USA, Tech. Rep., Jan. 2008.

N. Nethercote and J. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,”” ACM SIGPLAN
Notices, vol. 42, no. 6, pp. 89-100, June 2007.

N. Nethercote, “Dynamic Binary Analysis and Instrumentation,”
Ph.D. dissertation, Comput. Lab., Univ. Cambridge, Cambridge,
UK., 2004.

N. Nethercote and]. Seward, “How to Shadow Every Byte of
Memory Used by a Program,”” in Proc. 3rd Int’l ACM SIGPLAN/
SIGOPS Conf. VEE, 2007, pp. 65-74.

A. Jannesari and W.F. Tichy, “On-The-Fly Race Detection in
Multi-Threaded Programs,” in Proc. 6th Workshop PADTAD,
2008, pp. 1-10.

U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, ““Unraveling Data
Race Detection in the Intel Thread Checker,” in Proc. STMCS,
2006, pp. 69-78.

Data-Race-Test: Test Suite for Helgrind, a Data Race Detector,
Valgrind-Project, 2008. [Online]. Available: http://code.google.
com/p/data-race-test/

M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S.W. Keckler,
““Running Parsec 2.1 on M5,” Comput. Eng., Univ. Texas Austin,
Austin, TX, USA, pp. 1-20. [Online]. Available: http://www.cs.
utexas.edu/parsec-m5/TR-09-32.pdf

S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning From Mistakes: A
Comprehensive Study on Real World Concurrency Bug Char-
acteristics,”” in Proc. 13th Int’l Conf. ASPLOS, 2008, pp. 329-339.
Glib Reference Manual, G.D. Library, 2008. [Online]. Available:
http:/ /library.gnome.org/devel/glib/

M. Kim, H. Kim, and C.-K. Luk, “SD3: A Scalable Approach to
Dynamic Data-Dependence Profiling,” in Proc. 43rd Annual
IEEE/ACM Int’l Symp. MICRO, 2010, pp. 535-546.

A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, ““Applications of
Synchronization Coverage,” in Proc. 10th ACM SIGPLAN Symp.
PPoPP, 2005, pp. 206-212.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and
I. Neamtiu, “Finding and Reproducing Heisenbugs in Con-
current Programs,” in Proc. 8th USENIX Conf. OSDI, 2008,
pp. 267-280.

P. Sack, B.E. Bliss, Z. Ma, P. Petersen, and J. Torrellas, “ Accurate
and Efficient Filtering for the Intel Thread Checker Race
Detector,”” in Proc. 1st Workshop ASID, 2006, pp. 34-41.

C. Flanagan and S.N. Freund, “‘Fasttrack: Efficient and Precise
Dynamic Race Detection,” in Proc. ACM SIGPLAN Conf. PLDI,
2009, pp. 121-133.

C. Artho, K. Havelund, A. Biere, and A. Biere, “"High-Level Data
Races,” J. Softw. Test., Verification Rel., vol. 13, no. 4, pp. 207-227,
Dec. 2003.

S. Raza, S. Franke, and E. Ploedereder, “Detecting High-Level
Synchronization Errors in Parallel Programs,” in Proc. Rel. Softw.
Technol.—Ada-Europe, vol. LNCS 6652, A. Romanovsky and
T. Vardanega, Eds., 2011, vol. LNCS 6652, pp. 17-30, Springer-
Verlag; Berlin, Germany.

A. Jannesari, M. Westphal-Furuya, and W.F. Tichy, ““Dynamic
Data Race Detection for Correlated Variables,”” in Proc. 11th
ICA3PP,2011,vol. 1, pp. 14-26, Springer-Verlag: Berlin, Germany.
T. Li, A.R. Lebeck, and D.J. Sorin, ““Spin Detection Hardware for
Improved Management of Multithreaded Systems,”” IEEE Trans.
Parallel Distrib. Syst., vol. 17, no. 6, pp. 508-521, June 2006.

Ali Jannesari received the PhD degree in
computer science from Karlsruhe Institute of
Technology (formerly University of Karlsruhe),
Karlsruhe, Germany. He is the Head of the
multicore programming group at the German
Research School for Simulation Sciences and
RWTH Aachen University in Germany. His
research interest is mainly focused on software
engineering for multicore systems including
automated testing and debugging of parallel
programs, parallelism discovery and paralleliza-

tion methods, and parallel programming models. Performing empirical
studies towards the challenges that multicore developers are facing is
another major interest of his. He is a member of the IEEE Computer
Society, the ACM, and the German Computer Science Society.

2616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

Walter F. Tichy received the MS and PhD
degrees in computer science from Carnegie Mellon
University, in 1976 and 1980, respectively. He was
a Professor of Software Engineering at the
Karlsruhe Institute of Technology, Germany, since
1986. Previously, he was Senior Scientist at
Carnegie Group, Inc., in Pittsburgh, Pennsylvania
and served six years on the faculty of Computer
Science at Purdue University in West Lafayette,
Indiana. His primary research interests are soft-
ware engineering and parallelism. He is currently
concentrating on empirical software engineering, tools and languages for
multicore computers, and making programming more accessible by using
natural language for programming. He is director at the Forschungszentrum
Informatik, a technology transfer institute in Karlsruhe. He is co-founder of
ParTec, a company specializing in cluster computing. Dr. Tichy is a fellow of
the ACM and a member of Gl and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

