Massively Parallel Loading

Wolfgang Frings
Julich Supercomputing Centre
Forschungszentrum Jilich
52425 Jilich, Germany
w.frings@fz-juelich.de

Todd Gamblin
Lawrence Livermore
National Laboratory

Computation Directorate
Livermore, CA 94550
tgamblin@linl.gov

ABSTRACT

Dynamic linking has many advantages for managing large
code bases, but dynamically linked applications have not
typically scaled well on high performance computing sys-
tems. Splitting a monolithic executable into many dynamic
shared object (DSO) files decreases compile time for large
codes, reduces runtime memory requirements by allowing
modules to be loaded and unloaded as needed, and allows
common DSOs to be shared among many executables. How-
ever, launching an executable that depends on many DSOs
causes a flood of file system operations at program start-up,
when each process in the parallel application loads its depen-
dencies. At large scales, this operation has an effect similar
to a site-wide denial-of-service attack, as even large parallel
file systems struggle to service so many simultaneous re-
quests. In this paper, we present SPINDLE, a novel approach
to parallel loading that coordinates simultaneous file system
operations with a scalable network of cache server processes.
Our approach is transparent to user applications. We extend
the GNU loader, which is used in Linux as well as propri-
etary operating systems, to limit the number of simultane-
ous file system operations, quickly loading DSOs without
thrashing the file system. Our experiments show that our
prototype implementation has a low overhead and increases
the scalability of Pynamic, a benchmark that stresses the
dynamic loader, by a factor of 20.

Categories and Subject Descriptors

D.4.9 [Software]: Operating Systems—Systems Programs
and Utilities

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’13, June 10-14, 2013, Eugene, Oregon, USA.

Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

Dong H. Ahn
Lawrence Livermore
National Laboratory

Computation Directorate
Livermore, CA 94550
ahn1@linl.gov

Bronis R. de Supinski
Lawrence Livermore
National Laboratory

Computation Directorate
Livermore, CA 94550
bronis@IInl.gov

Matthew LeGendre
Lawrence Livermore
National Laboratory

Computation Directorate
Livermore, CA 94550
legendre1@lInl.gov

Felix Wolf
German Research School for
Simulation Sciences
52062 Aachen, Germany
RWTH Aachen University
52056 Aachen, Germany

f.wolf@grs-sim.de

Keywords
HPC; Scalability; OS/runtime service

1. INTRODUCTION

Software complexity is increasing in high performance com-
puting (HPC) applications, and dynamic linking and load-
ing [13] offer advantages for managing this complexity. Dy-
namic libraries allow large applications to be modularized,
or split into independently built packages. Modules can
greatly reduce build time for developers, and each mod-
ule can be loaded and unloaded dynamically at runtime as
needed. This saves memory and frees developers from the
burden of maintaining multiple pre-configured builds of large
applications. Further, dynamic loading is used extensively
by dynamic languages such as Python. High-level abstrac-
tions in these languages enable the rapid development of
new plugins and packages, and they reduce software com-
plexity for application programmers. These features are in-
creasingly used to manage complexity in large, multi-physics
simulation codes, which may have millions of lines of code
and thousands of runtime-configurable parameters.

Despite these benefits, there are serious scalability prob-
lems with most modern loading mechanisms. Dynamic link-
ing defers the process of locating object code and resolving
its symbols until runtime. To load a library, most load-
ers first search a list of file system locations until the tar-
get library is found, then they load the library into mem-
ory. This mechanism does not differ significantly from the
method used by the MULTICS [6] operating system that in-
troduced dynamic linking in 1964. While it was suitable for
a single-node machine, it breaks down in parallel. Jobs on
today’s largest machines [12] may have over a million con-
current processes, and concurrency is generally increasing.
In practice, most processes load the same libraries they de-
pend on simultaneously. Modern supercomputers typically
lack node-local storage, and even large parallel file systems
cannot quickly service millions or billions of small, simulta-
neous 1/0 requests. Loading an application initiates an 1/O
storm that manifests much like a denial-of-service attack.
The file system, often shared site-wide, becomes unavailable,
and dependent jobs sit idle until all requests are cleared.

The dynamic loader has remained much the same for over
four decades, but it must change to reach extreme scale.
To load object code on systems with potentially billions of
processors, the loading service itself must be made paral-
lel, and it must efficiently coordinate trillions of concurrent
load requests. In this paper, we take advantage of the inher-
ent parallelism of large-scale loading. In most cases, object
code is read-only, and the same code is requested simulta-
neously by many processes. Parallel loading is very similar
to a broadcast. We have developed Scalable Parallel Input
Network for Dynamic Loading Environments (SPINDLE), a
novel solution that extends the dynamic loader to route load
operations through a network of scalable file-cache servers.
Only a small set of designated daemons communicate di-
rectly with the file system, and SPINDLE proactively dis-
tributes and caches DSOs.

This paper makes the following contributions:

e Detailed analysis of real-world impact of scalability
problems with today’s dynamic loader;

e Novel techniques to transparently coordinate dynamic
loaders through an existing interface;

e An architectural blueprint for a global parallel loading
service;

e A portable implementation of this architecture includ-
ing integration with portable software infrastructure.

We have applied SPINDLE to Pynamic, a parallel bench-
mark that stresses dynamic loading performance. Using
SPINDLE, Pynamic can run on 20 times as many processes
without overloading the file system. Further, the perfor-
mance overhead of our scheme is constant with respect to
the number of processes. Overall, our evaluation suggests
that our approach to dynamic loading offers a viable path
to massively scalable loading on extreme-scale systems.

The remainder of the paper is organized as follows. Sec-
tion 2 motivates our work and reviews the state-of-the-art
techniques. Section 3 then describes the software architec-
ture and key elements of SPINDLE. Section 4 details our ex-
perimental evaluations, and Section 5 summarizes our find-
ings and discusses future work.

2. SCALING CHALLENGES

The dynamic loader, also called the dynamic linker, is re-
sponsible for locating object code and making it available
within a process’s address space. These actions make the
object code’s subroutines callable by the main program. Dy-
namic linking and loading first appeared in the MULTICS [6]
operating system (OS) in 1964, as a way to share common
code between processes. For this reason, dynamically linked
libraries are also often called shared libraries, and any object
files that can be linked and loaded by the dynamic loader are
called dynamic shared objects (DSOs). Most HPC systems
including Linux clusters, IBM Blue Gene, and Cray ma-
chines use the dynamic loader implementation from GNU’s
libc, which is based on standards detailed in the System V
Application Binary Interface (ABI) [1].

The dynamic loader is implemented as a DSO that is
loaded by the OS during process start-up. The OS gives
control to the loader, which then loads the main executable’s
dependent libraries and transfers control to the executable’s

entry point. The executable may re-invoke routines in the
dynamic loader to resolve symbols or to load new DSOs
during runtime (via routines such as dlopen). The tasks
of finding and loading object code involve many file system
operations, and the simultaneous execution of many such
operations is not scalable. Loading massively parallel ap-
plications thus has the potential to overwhelm a site-wide
shared file system, which can disrupt other applications run-
ning across the entire computing facility.

2.1 Scaling Challenges with the KULL Code

KULL [15] is a large multi-physics application developed
at LLNL. When it was first run on Dawn, an IBM Blue
Gene/P system, its start-up exposed serious scaling chal-
lenges and significantly disrupted the entire computing cen-
ter. The KULL executable was dynamically linked to about
one thousand shared libraries, most of them staged in an
NFS file system to ease maintenance. Loading these libraries
during program start-up scaled extremely poorly. The time
from job launch to the initial invocation of KULL’s main
function, for instance, took about one hour at 2,048 MPI
processes and ten hours at 16,384 processes. Further, dur-
ing start-up, the NFS server was overwhelmed with load
requests from KULL, and other users and jobs were unable
to connect to the NFS while KULL start-up continued.

Our initial analysis revealed that the large-scale parallel
loading created an enormous I/O storm that far exceeded
the file server’s capability. In particular, the dynamic loader
(1d.so) was making massive numbers of unnecessary open
calls at scale. On 16,384 MPI processes, we instrumented
the loader and determined that it issued 300 million open
calls to the NFS server. As a first attempt to address the
problem, we staged the application executable and its library
dependencies on Lustre [17], a parallel file system mounted
on this machine. When we saw no improvement, we com-
menced a more detailed analysis.

2.2 Non-Scalable Loader Algorithm

The dynamic loader performs two types of file system op-
erations: queries to locate a DSO and reads to load its con-
tents into memory. Locating a DSO is necessary because
an executable does not specify its dependent libraries with
full path information, but instead provides the names of the
libraries it needs loaded. To load a particular library, the
dynamic loader searches for files with its name in system
locations (e.g., /1ib), directories named in the executable
(rpaths), or directories named in environment variables such
as LD_LIBRARY_PATH. The GNU implementation tests for ex-
istence by appending the name to each directory and calling
open on the resulting path.

Search paths are a form of late binding that supports a
flexible user environment. By simply modifying the search
path, users can run the same executable with an updated
or improved version of a library without recompiling. The
concept has remained largely unchanged since MULTICS.
However, this algorithm requires a large number of file sys-
tem operations, which are not a problem for a sequential
program with a dedicated file system. A parallel application
with P processes, L library dependencies, and D directories
in its search path will perform O(PDL) file system oper-
ations simply to locate shared libraries; this accounted for
the bulk of the 300 million open calls in our KULL example.

Once a library has been located, the dynamic loader maps

it into memory. Each library contains a table of program
headers that describe what parts of the library on disk should
be mapped into memory. Typically, its code and data are
mapped into memory while its debug and linking informa-
tion are not. Unfortunately, the loading protocol is similarly
unscalable. The GNU loader uses open and read system
calls to access the program headers, then mmap system calls
to load the bulk of the library into memory. A parallel appli-
cation with the GNU loader will thus perform O(PL) load
operations during its start-up.

Nearly all major runtime environments in use today use
these algorithms to locate and to load executable code. Lan-
guages like Python and Java use search paths to find and to
load modules. Major OSs such as Mac OS X and Windows
also use search paths in their dynamic loaders. When run
in parallel, these approaches produce O(PDL) search oper-
ations and O(PL) load operations, and this will thrash the
file systems in the scaling limit of P.

2.3 State-of-the-Art Approaches to Loading

We are not the first to address the problem of scalable
parallel loading. In this section, we discuss existing solutions
to put our work in context. The approaches discussed here
can be broken down into two categories: those that attempt
to improve I/O and storage technologies so that the existing,
unscalable loading algorithm will perform faster, and those
that attempt to modify the loader.

2.3.1 Parallel File Systems

Staging object code in parallel file systems [9, 17] so that
the loader can access it more effectively seems like a sim-
ple solution to our problem. Modern parallel file systems
are clusters themselves that combine multiple disks spread
across their nodes into a logical unit. While access to a sin-
gle disk does not scale well, parallel access to the array of
disks scales to the number of nodes in the cluster. Thus, par-
allel file systems like Lustre [17] significantly improve data-
parallel access to large data-set files that are striped across
the array of disks. Unfortunately, parallel loading does not
exhibit this access pattern.

Parallel loading exhibits no data parallelism, as each pro-
cess accesses the same, small files. Worse, for library search,
parallelism is needed for large numbers of metadata opera-
tions, and parallel file systems typically have far fewer meta-
data servers than data servers. As a result, our analysis
shows that while they offer a performance advantage over
NFS when used with a traditional loader, they do not ad-
dress the fundamental scaling problem in the loader. Coor-
dinating I/O in parallel among the loaders themselves can
easily outperform both Lustre and NF'S.

2.3.2 Caching and Staging Solutions

Many large-scale systems, such as IBM’s Blue Gene ma-
chines and more recent Cray XT machines, have dedicated
1/0 nodes that sit closer to the compute nodes than the par-
allel file system. A common approach to loading on these
architectures stages object code on these nodes and mounts
the staging area on the compute nodes. This approach has
been used at Argonne National Laboratory (ANL) to accel-
erate the loading of Python applications on the Intrepid Blue
Gene/P machine. It is effective in speeding up the loading
process, but it is not transparent to users.

First, it requires application developers to stage their ap-

plication in a custom I/O node image, which can be tedious
when there are large numbers of libraries. Second, users of-
ten cannot easily determine which libraries an application
needs to load. Most end-users of Python, for example, are
not familiar with its standard libraries or with those that
have DSOs which need to be staged. Third, in some cases
the library search path is not known until runtime, so it is
impossible to stage all loads that the application performs.

Cray uses DVS [10, 11], a proprietary I/O forwarding ser-
vice, to make this process more transparent. DVS dedicates
an NFS server to compute nodes on which it attempts to
aggressively populate a hierarchy of caches along the I/0O
forwarding path. However, this approach requires users to
stage all application-shared libraries to the dedicated NF'S
server, which can be tedious — similar to ANL’s approach.
Further, they do not exploit the full available parallelism of
read-only dynamic load routines. Caching directly in the
loader is a more direct, coordinated and scalable approach.

2.3.3 A Peer-to-Peer Solution

Dosanjh, et al. propose a peer-to-peer (P2P) architecture
for distributing shared libraries across a network [7]. The
approach is similar in spirit to our own, in that it caches
loaded libraries in a RAM disk and aims to satisfy most
load requests within the HPC network to reduce file system
load. The approach has the potential for high-bandwidth
file distribution, as it is based on the BitTorrent protocol.
The authors share our vision of a high-availability parallel
loading service; their architecture integrates a loading dae-
mon with the OS. It is difficult to draw a fair comparison
with this work, because it is still in early design stages.

As proposed, the P2P approach does not address two key
problems that SPINDLE addresses. First, the authors’ de-
sign requires users to specify all library dependencies in a
job description so that they can be seeded to the compute
nodes for P2P sharing. This requires, as do the techniques
in Sections 2.3.1 and 2.3.2, that users know all library de-
pendencies of their application and specify them in advance.
SPINDLE optimizes the case where dependencies are known
in advance, but it is still efficient when dependencies are
not known until runtime. Second, the proposed approach
does not address the metadata storm resulting from large-
scale application start-up. The authors mention that initial
seeder processes must handle the first set of requests for li-
braries as well as a large number of stat() calls issued by
the dynamic loader. However, they do not discuss a coordi-
nated I/0 strategy that would allow these seeders to satisfy
millions of requests quickly for each job launch. The authors
mention distributed hashing techniques in the paper, which
are promising for scalable P2P loading. We have addressed
these problems in SPINDLE with a low-latency tree-based
architecture, and by using the rtld-audit interface to modify
the loader’s behavior. Our approach does not require OS
daemons and runs entirely in user space.

2.3.4 Solutions that Modify the Loader

The collfs library [4] developed jointly by ANL and
the King Abdullah University of Science and Technology
(KAUST) provides a scalable dynamic loading service for
Python applications. collfs allows one process to load li-
braries that it broadcasts synchronously to the full system.
This solution customizes the GNU loader and the Python
runtime to use MPI collectives to load libraries. This ap-

proach is effective and can drastically speed up many Python
programs, but the implementation changes the semantics of
loading by requiring that it be synchronous. When used
this way, some Python programs will require modification
so that all loads are performed at the same time, otherwise
programs may deadlock.

Our solution handles asynchronous loads of different li-
braries as well as synchronous loads of the same DSO. collfs
is a good example of how coordinated I/O can speed up load-
ing, but its synchronous semantics and application-specific
nature limit its use. It also has technical limitations for
system-wide use: it requires a modified version of glibc,
which makes it very difficult to install. In contrast, SPINDLE
uses the rtld-audit interface, which allows us to intercept
GNU loader actions without requiring direct modifications
to the loader itself. collfs also relies on the MPI library,
which is not always available at runtime. Our solution works
with any programming model for large-scale systems.

2.4 Loading as a Parallel Service

Parallel loading is an example of a case in which a sequen-
tial solution applied by each of P processes does not yield
good parallel performance. Our key observation is that most
processes request the same objects from the file system, or
at least objects that have also been loaded by nearby pro-
cesses. Rather than accessing the remote file system each
time a file is needed, we should exploit the likelihood that
a neighbor has already requested the file. Thus, we can co-
ordinate I/O to distribute files much more efficiently and,
thus, reduce the stress on the limited file system resources.

Alternative techniques such as DVS (discussed above) at-
tempt to increase the level of I/O coordination transparently
at the file system level while keeping loader behavior fixed.
These techniques have the advantage of maintaining exist-
ing abstractions, such as POSIX 1/0, which are familiar to
users of UNIX-like OSs and which make sense in a sequential
environment. However, the strict semantics of such abstrac-
tions can limit their scalability in a parallel environment. As
an example, POSIX file I/O semantics disallow caching of
failed open calls, forcing every library search query to go all
the way to the file system. Further, traditional file I/O ab-
stractions are oblivious to the type of data being transferred,
which precludes many parallel optimizations.

We raise the abstraction to the level of the loader, which
allows the loader to perform its own coordinated I/O. Thus,
we can exploit knowledge about the files in parallel use.
Object code is nearly always read-only and further ample
parallelism exists in parallel loading. The performance ad-
vantages of exploiting both of these characteristics are too
great to be ignored in a parallel environment. For this rea-
son, we recommend that the loader architecture be changed
for parallel machines. SPINDLE represents a significant step
towards such a truly massively parallel loading service ar-
chitecture.

3. THE SPINDLE APPROACH

Parallel applications that follow the SPMD model, which
is the standard in modern HPC, issue duplicate load requests
across a potentially large number of processes. On large-
scale systems, even applications that employ the MPMD
model tend to divide processes into SPMD groups. Thus,
most load requests occur at program start-up and are con-
centrated in a very short interval to a common set of files,

which causes the type of file-access storm that we described
previously. However, we can also exploit this temporal lo-
cality to solve the problem. SPINDLE intercepts requests for
libraries made by the dynamic loader, and it services them
with a combination of scalable parallel broadcasts and a lo-
cal file-system cache. The cache provides efficient local ac-
cess, and broadcast operations allow each requested object
to be loaded from the file system only once, then propagated
scalably to the nodes that need it. This removes the O(P)
scaling bottleneck that we discussed in Section 2.2.

In addition to temporal locality, parallel loading exhibits
spatial locality. With high probability, each process loads
the same sequence of libraries at start-up, because link de-
pendencies are embedded in the executable and libraries.
While we do not require this strong locality of reference for
efficient loading, our SPINDLE implementation can exploit it.

The SPINDLE broadcast operation can be initiated in two
different ways. With the push model, we assume that when
SPINDLE receives the first request for a particular library,
other processes are likely making the same request. With
push, SPINDLE immediately broadcasts each library to all
processes when it is first requested. In contrast, the pull
model sends libraries to nodes only as they request them.
The push model is more efficient for SPMD applications
where each process needs the same DSOs. However, it can
waste memory in MPMD applications by pushing libraries
onto processes that do not require them. The pull model,
which we are still developing and testing, will be more ap-
propriate in MPMD applications.

Figure 1 shows SPINDLE’s architecture for coordinating
the loading procedure among different processes of a par-
allel application. It maintains a collection of load servers
(daemons) alongside the application processes, which cache
replicas of DSOs in local RAM disks. A client adapter dy-
namically linked into each application process redirects all
load requests to a nearby load server. In this way, we keep
the client adapter as lightweight as possible. To combine
load requests for the same object issued by different appli-
cation processes, and to facilitate efficient broadcasts, the
servers are attached to a network that connects them to
each other and to the underlying file system.

3.1 Overall Architecture

As mentioned, application processes usually load most of
their required libraries during start-up. However, MPI and
other runtime communication systems are typically unavail-
able during this time. That makes it difficult to coordinate
loading in parallel. This restriction leads to our first design
decision: SPINDLE establishes its own independent commu-
nication network, implemented as an overlay network on top
of the existing one. The load servers are designed to commu-
nicate with an arbitrary number of application processes and
other load servers at the same time. This provides the flexi-
bility needed to build customized overlay network topologies
that optimally match the underlying hardware communica-
tion structure and also the capabilities of the file systems.
While Figure 1 shows a tree topology with one root server
connected to the file system, SPINDLE can configure more
efficient topologies such as a forest of trees whereby multi-
ple roots connect to a more capable file system. Further,
the daemon concept keeps our design open to an integration
with other system services, thus forming the precursor of a
more general parallel loading service architecture.

Load
server

Load Load
server

server

Load
server

Load server

Client Client
adapter adapter
Compute D?{nsmlc Dlynimlc
node InKker Inker

Figure 1: Overall architecture of SPINDLE

Finally, the application client adapter has to reroute all
file-system requests such as searching for libraries or load-
ing the library code to the SPINDLE servers. To avoid im-
plementing our own dynamic loader, we decided to use the
rtld-audit auditing APT of the GNU loader for this purpose.
This interface allows user code to intercept load requests and
modify the dynamic loader’s behavior. Our design allows
us to run all components of SPINDLE in user space without
having to modify the runtime system. Below, we explain the
components of SPINDLE including the client, the server, the
overlay network, and the motivation behind their design.

3.2 Client Adapter

The client adapter hooks into the dynamic loader, inter-
cepts load requests and file searches, and redirects them to
a nearby load server. To implement the interception, we
use the rtld-audit [16] interface provided by the GNU dy-
namic loader. The interface allows us to register callbacks
that are invoked when the dynamic loader performs certain
operations. One of these callbacks triggers before the loader
tests a directory for the existence of a library. This callback
can optionally return an alternate location that the loader
should look in. Our implementation of this function reroutes
load requests to the SPINDLE load server, which obtains the
DSO and returns its location in the local RAM disk. Our
callback then returns this location to the loader for access
from the faster local storage.

The rtld-audit interface was originally intended to help
debug the dynamic loader, thus enabling it has several im-
plications when used for our purpose. First, the callbacks
for rtld-audit are supplied in a DSO, which is specified via
the LD_AUDIT environment variable, and loaded into a spe-

cial library namespace. While this namespace protects the
rtld-audit library by disallowing other application libraries
from seeing its symbols, the strong isolation also restricts
its access to functionalities in other libraries, with an ex-
ception for libc. This restriction prevents the client adapter
from using the TCP/IP stack, which resides in additional
dynamic libraries. Instead, our adapters use UNIX-named
pipes to communicate with their load servers, which can be
managed directly using libc. Because named pipes do not
allow inter-node communication, our design currently runs
at least one load server on each node.

Second, enabling rtld-audit puts the dynamic loader into
debug mode and has a performance impact on the appli-
cation. Under normal execution mode, the first time an
inter-library call-site is invoked, the dynamic loader will look
up its target function and cache it in the global offset ta-
ble (GOT). Subsequent invocations of the call-site will use
the GOT entry and skip the lookup. This binding has per-
formance advantages, in particular when this call-site is exe-
cuted multiple times. With rtld-audit enabled, however, the
loader will not finalize the binding by filling in the GOT,
which allows rtld-audit callbacks to be delivered upon ev-
ery inter-library call. This can impose an additional per-
formance overhead, which we address by having the client
adapter take over the responsibility of filling in the GOT for
the dynamic loader.

Third, the rtld-audit interface does not provide any mech-
anism for intercepting loading of the executable or rtld-audit
library. However, loading the executable through SPINDLE
is particularly important because executables can contain a
large percent of application code and cause significant load
on shared file systems. SPINDLE solves this using Launch-
MON [2], a scalable tools infrastructure component for
launching parallel applications and tools across a wide range
of HPC platforms. The user gives SPINDLE the command
that launches the parallel application. SPINDLE then mod-
ifies it to launch a small statically-linked bootstrapper ex-
ecutable first and transfers control to LaunchMON. Next,
LaunchMON starts this bootstrapper alongside the load
server on each node. Finally, the bootstrapper works with
the load server to move the executable and rtld-audit library
into the RAM disk and then exec’s the application.

In addition to DSOs, SPINDLE can accelerate the paral-
lel reading of Python modules. Interpreted languages like
Python load not only DSOs, but also the script and byte-
code files required by external modules. These can often be
more numerous than shared libraries. When the Python in-
terpreter opens such a file, our client adapter intercepts the
attempt using another rtld-audit callback function, which is
called when an entry in the procedure linkage table (PLT)
is resolved. We route these files through the same caching
mechanism: they are stored on the local RAM disk and the
open call is rerouted to their new location.

3.3 Load Server

To handle DSO search and load requests for clients, the
load server plays three roles: it manages local replicas, inter-
acts with other load servers through an overlay network, and
accesses the file system if designated as a reader. Locally,
the server stores copies of DSOs and metadata on search di-
rectories and libraries. The files are stored in a RAM disk,
and the server maintains the metadata in a hash table.

3.3.1 Operation

File existence tests contribute to a significant part of the
shared file system load, and the SPINDLE server caches the
contents of directories to optimize these operations.
When the dynamic loader tests a file path for existence, the
operation is rerouted to the load server. The server looks
up the corresponding directory in its metadata table. If it
exists, the table provides information on all files in the di-
rectory and the existence of a file can be verified locally.
Otherwise, the load server triggers a designated-reader pro-
tocol, whereby a server responsible for the directory reads
it via file-system operations and broadcasts the results to
the rest of the servers. Similarly for file data, one server
reads the file from the file system and distributes it to the
remaining servers, which store it on their local RAM disks.

In terms of data management, we use replication schemes,
where all objects are proactively replicated across servers,
as opposed to distribution schemes where data distributed
among the servers reactively services requests. Although
replication requires more memory, we have made this design
choice because it offers a significant performance advantage
over the alternative. The load requests typically occur in
the same order in a short interval, and thus our replication-
based push model can better exploit such strong locality
of reference. For example, the replicated metadata allow
the bulk of search operations to be satisfied locally without
relying on frequent server-to-server communication. Library
files themselves will also be locally available, shortly after
one server reads the file from the file system, ready to service
other identical requests anticipated shortly.

Figure 2 shows the implementation details as to how the
load server quickly replicates file data as well as metadata.
Figure 2(a) illustrates the metadata handling: on a search
request, a server either parses the directory by itself or for-
wards the search request to another nearby server in the
overlay network. Figure 2(b) shows the file data: one reads
the file from the file system, stores it on its local RAM disk,
and distributes it to the remaining servers. These are enough
to trigger our designated reader scheme.

3.3.2 Memory Overhead

While SPINDLE improves the performance and scalability
of shared library loading, it does this at the expense of using
extra memory on each node. The amount used is approx-
imately equal to the total amount of code in libraries and
the executable minus the amount of code in the application’s
working set. In other words, SPINDLE makes an application
use memory as if every code page were in its working set.

During normal execution, Linux loads code pages into
physical memory only when they are first touched. Under
SPINDLE, all code is stored in a RAM disk and kept in phys-
ical memory for the entire execution of an application. The
RAM disk is not a direct duplication of code pages—Linux
is smart enough to use the same physical memory to back
both the RAM disk and the application’s virtual memory
pages. The bulk of SPINDLE’s memory overhead thus comes
from placing code pages into the RAM disk that would not
have been touched or loaded without SPINDLE.

While code preloading incurs extra memory overhead, it
has advantages for extreme-scale environments. Loading
pages from disk as-needed during execution is a well-known
source of undesirable OS noise. Thus, high-end systems like

Other
Client load
ELETICIS server
If directory not already
processed

Load server

"{ Search_request (path) | readdir

Directo
Filename

——> Lookup

I Answer: lookup path |<—'—

(a) Meta data lookup operation

Other
load
server

If file not in local
storage

Load server
"| Search_request (path) |

Directol
Filename

| Answer: local path

Map to
local path

(b) File read operation

Figure 2: Load requests handling in load server

IBM Blue Gene intentionally preload pages into memory and
avoid this noise [8].

As an optimization, SPINDLE does not load the entire li-
brary file into RAM disk. Each DSO specifies parts of itself
that should be loaded into memory via a table of program
headers. Typically, a DSO will specify that its code and
data should be mapped into memory, while debug informa-
tion and the symbol table are left on disk. The load server
reads these program headers and caches only the parts of
a library that are needed at runtime. Essentially, SPINDLE
strips libraries before transmitting them. This does make
using a debugger on a SPINDLE application difficult, and we
have future plans to hide these effects by pointing debuggers
back to the original library files.

Memory used by libraries loaded by SPINDLE is treated dif-
ferently in low-memory situations. Since the memory pages
that store libraries are backed by a RAM disk, they can-
not be paged out when the system runs low on memory. If
those pages were backed by a shared file system, they could
be dropped and reloaded as needed. This means an applica-
tion using SPINDLE may run out of memory if it uses paging
without SPINDLE.

3.4 Overlay Network

To funnel requests to the file system and to broadcast
DSOs back to the application, SPINDLE load servers have to
rely on a communication infrastructure. In the absence of
an application runtime communication system like MPI, at
start-up we have to create our own overlay network on top
of the system network infrastructure.

For this, we use COBO [5], the Collective Bootstrapper,

a scalable implementation of the PMGR collective protocol
that is used as an MPI job start-up mechanism. Unlike the
original PMGR protocol, which connects all clients to one
master client, COBO uses a scalable tree topology. COBO
is part of the LaunchMON software infrastructure, which
allows tool servers to be co-located with a parallel job. As
discussed before, SPINDLE integrates LaunchMON to start
the load servers along with the application processes.

The overlay network is initialized during application start-
up. Given a list of hosts as input, COBO establishes the
overlay network by distributing connection information from
the root down to the leaf nodes. Given that the servers—in
contrast to the clients—are not part of the parallel appli-
cation and are not restricted to libc functions, we can use
TCP/IP sockets for inter-server communications. COBO
provides collective communication operations, which we use
to distribute libraries from the root server to all others.

In the following, we present two network topologies: a
single tree as our base configuration and a forest to exploit
the bandwidth of parallel file systems. We also discuss bulk
preloading, an optimization that anticipates load requests
even earlier based on static analysis of the executable.

3.4.1 Single Tree

To connect n nodes, COBO creates a binomial tree of
degree d (n < 2%). According to the properties of such a
tree, messages broadcast from the root will arrive at each
node after not more than d hops. Thus, tree depth and
walk distance vary no more than logarithmically with the
number of load servers.

3.4.2 [Forest

For larger configurations, we also offer the option of a for-
est consisting of multiple trees. In this way, we can take
advantage of parallel file systems, reading file data from a
moderate number of root nodes concurrently. Assuming that
these root nodes read their data in parallel, the propagation
of data inside individual trees is also accelerated. For exam-
ple, when using d trees, the size of individual trees will be
reduced by a factor of 2 in comparison to a single tree and
the maximum distance will reduced to d — 1 hops. In the
current implementation, the forest is built by dividing the
host list into different partitions and deploying a separate
overlay network for each of these partitions.

3.4.3 Bulk Preloading

SPINDLE normally loads a library if at least one of the pro-
cesses requests it at runtime. A complementary approach is
to predict the demand in advance and stage all required
libraries in advance. SPINDLE statically analyzes the exe-
cutable and extracts its library dependencies. With these,
it can initialize the caches of the load servers without wait-
ing for runtime load requests. The subsequent requests for
the preloaded files are fulfilled immediately. Bulk preload-
ing does not have to cover every possible library. Libraries
accessed dynamically, such as those loaded via dlopen, can
still be loaded through SPINDLE’s push mechanism. In the
future other hints, such as suggestions from the user, could
be used to increase the number of preloaded DSOs.

SPINDLE provides bulk preloading through the Launch-
MON front-end client. LaunchMON replaces the normal
start-up command such as mpiexec and starts the parallel
application along with the tool servers. Since the front-

end client is also part of the overlay network, it enables
direct communication with our load servers. This allows
us to proactively push a collection of libraries to the load
servers before the application requests them. On HPC sys-
tems where the runtime environment differs between front-
and back-end nodes, the paths of preloaded library have
to be changed to the back-end location. For this, we use
FGFS [3], a scalable utility to obtain global file properties.

3.5 Caching Algorithms

Our design is flexible enough to support a variety of al-
gorithms for request handling, caching, and information for-
warding. In its most general form, search and read requests
are injected into the server network by a client. The server
forwards the request to another server that is designated as
responsible for the desired file. An internal mapping func-
tion decides which server this is. The server returned by
this function then performs the actual file operation on be-
half of the client and broadcasts the file data to all remaining
servers. Changing the mapping function is one way of con-
figuring SPINDLE’s behavior.

In the current implementation, the network topology is a
tree or a forest. This constrains the communication scheme
to a top-down distribution of information from the root node
to other nodes. (Figure 1). The mapping function in this
case is quite simple: the root server is responsible for all
library files. Viewed from the perspective of the file system,
the load a parallel application generates is equal to the load
of a single process times the number of trees in the forest,
which is a configurable number and usually small. Our ini-
tial implementation assumes that all processes request the
same libraries in the same order, which is not uncommon for
SPMD codes. In this case, a load server does not have to for-
ward an incoming request up the tree. Since the root server
will receive all possible requests from its local client, an ar-
bitrary server just has to wait until the root server pushes
the desired libraries in its direction. This policy reflects a
proactive top-down distribution of cache data, but can cause
problems if different processes load different libraries. This
assumption eased our initial implementation and provided
convenient optimizations, but it is not fundamental to the
SPINDLE approach.

In the future, we plan to provide more sophisticated file-
distribution schemes. Using point-to-point communication
between servers, a function we already added to COBO,
can provide an on-demand distribution scheme where each
server can actively inject search requests into the network
and maintain full authority over the contents of its local
cache. This will allow us to combine the pull model with
the push model. Further optimizations include the auto-
matic reduction of data exchanged among load servers. For
example, we could check whether a requested library is a
system library. System libraries may reside in a node-local
file system, where caching is not needed. Finally, we plan
to improve server efficiency through multithreading to allow
local and network operations to be performed concurrently.

4. EVALUATION

The main purpose of SPINDLE is to reduce the start-up
time for parallel applications that extensively use DSOs. To
verify this and also to show the scalability of our approach,
we tested SPINDLE with a synthetic benchmark named Py-
namic on the Sierra Linux cluster installed at LLNL. In the

700.0 + I I I I
] =#=Pynamic on NFS
600.0 - 606.5 =@=Pynamic on Lustre -
: =#=Pynamic on NFS + SPINDLE
500.0 b 461.3 Pynamic benchmark on Sierra B
< b 495 shared objs, 280 calls, 215 utility libs, 1.1GB
& 400.0 -
g] .
276.3
iz 300.0 -
5 : 204.7//‘P
= 200.0 1520 I
. 128.3 m—1
100.0 - T
00 +—+——+++++ T — T ——
0 128 256 384 512 640 768 896 1024 1152 1280
nodes
(a) NFS and Lustre file systems vs. NFS under SPINDLE
350.0 + ! : ‘ -
] 332.8 |Pynamic benchmark on Sierra =¢=Pynamic on NFS
300.0] r 495 shared objs, 280 calls, 215 utility libs, 1.1GB| | «#=Pynamic on NFS + SPINDLE cache |
)] 28716 =@-SPINDLE data distribution
250.0 2490 2455
T] =
::: 200.0] 1802 =~
£ 1 4 1566 //
= 150.0 + 1242 "
,;, 14 1254 gls 1_032/
. 45.3 46.5 45.0
> — T . 3
00 —————— f } —— [—— T T —— !
0 128 256 384 512 640 768 896 1024 1152 1280
nodes

(b) Using bulk preloading

Figure 3: Pynamic benchmark run on LLNL Linux cluster Sierra

following, we will introduce the Pynamic benchmark, show
the results of Pynamic running without and with SPINDLE
support for the Sierra system up to 1,276 nodes, and discuss
the memory footprint of SPINDLE.

4.1 Pynamic Benchmark

Pynamic is a benchmark that supports configurable emu-
lation of dynamic loading in Python-based applications on
massively parallel systems. This pyMPI-based [14] bench-
mark allows users to configure and generate arbitrary num-
bers of Python dynamic modules and utility libraries of a
arbitrary sizes. It uses a code generator to create these
DSOs, which are then used by a dummy application to
closely model the behavior of Python-based multi-physics
applications. Pynamic outputs three performance metrics
that capture three phases of real-world dynamic loading and
linking: start-up time for the initial library loading; module-
import time for symbol resolution; and visit time for exe-
cution. Because dynamic loaders typically provide options
that can shift these overheads from one phase to another,
the sum of the three metrics is the overall figure of merit.

4.2 Results on Sierra

We ran our tests on the Sierra Linux cluster at LLNL,
which is equipped with 1,856 compute nodes. The nodes
have a 2-socket Intel Xeon EP X5660 CPU (2.8 GHz) with
12 cores and 24 GB of RAM. Nodes are connected by a
Qlogic Infiniband QDR interconnect. We used two systems:
NFS and Lustre. On Sierra, NFS is used for the home file
system and Lustre is used for scratch data space. In all
of these tests, we configured Pynamic to load 495 shared
objects, a total of 1.1 GB of library files.

For our first test, we ran Pynamic without SPINDLE and
loaded libraries from NFS. As shown in Figure 3(a) the over-
all runtime increased rapidly. We stopped this measurement
at a small scale (< 100 nodes) to prevent an I/O storm that
would affect other users on the system. The run-time in-
creased exponentially, which can be explained by the poor
parallel support of NFS.

As described in Section 2.3.1, a parallel file system is bet-
ter suited to the types of file operations used in Pynamic.
Therefore, we ran the same test on Sierra with the library
files staged on Lustre. Figure 3(a) shows more linear growth
in the runtime under Lustre, and we ran the test up to 512

nodes, 6,144 processes. The linear scaling of these runs
shows significant improvement compared to prior experi-
ences with Lustre (which had suggested that NFS might
perform better than Lustre). A likely cause was the rela-
tively recent enabling of read caches on the Lustre servers.
We would expect further improvements if Lustre were bet-
ter configured for the type of I/O access pattern associated
with Pynamic (small files and high metadata rate), though
this is not the typical file access pattern for HPC file sys-
tems (large files and data parallelism). Our measurements
show that Lustre could be a partial solution to the loading
problem, but only up to a moderate number of processes.
The Lustre performance was already starting to degrade at
these scale, and would likely have suffered more at larger
scales.

In our third test case, we ran Pynamic with SPINDLE, with
libraries hosted on NFS. As shown in Figure 3(a), SPINDLE
allows us to run Pynamic at the largest allocation size on
Sierra, with 15,312 processes distributed over 1,276 compute
nodes. SPINDLE reduced the overall Pynamic runtime to 276
seconds. This is faster than the NFS test with 64 nodes and
the Lustre test with 256 nodes.

Though SPINDLE allowed us to run Pynamic at a signif-
icantly larger scale, we still saw unexpected growth in the
total runtime, from 81 seconds at a small scale to 276 sec-
onds at higher scales. Pynamic’s built-in timings did not
help us to distinguish whether this time increase was due
to poor scaling in SPINDLE or whether it was part of Py-
namic’s reliance on PyMPI (which was known to have scal-
ability issues). To get a better understanding of this effect,
we designed a further benchmark run where the library load
process was separated from the benchmark execution. We
enabled the bulk-preloading feature of SPINDLE (see Sec-
tion 3.4.3) where the front-end process reads the list of pre-
requisite libraries and populates the load server caches be-
fore Pynamic starts.

This allowed us to measure the timing for SPINDLE data
distribution, but removed from the Pynamic overhead. Fig-
ure 3(b) shows the results. Bulk-preloading takes constant
time (though in theory it should be logarithmic at large
enough scales). The larger SPINDLE scale tests were per-
formed with multiple COBO trees (see Section 3.4.2), which
limited the depth of each individual tree and the time to
broadcast data. The largest test was done with four trees,
each with depth eight. Given that the total Pynamic run-
time continued to grow, even with all files pre-staged to
the RAM disk, we concluded that this growth came from
Pynamic’s communication rather than library I/0. We will
work with the Pynamic developers to eliminate these scaling
problems in a new version of the benchmark.

Given the flat scaling of the data distribution phase, we
expect that SPINDLE will continue performing well on future
systems and it represents a viable path towards dynamic
loading at exascale.

4.3 Memory Usage

As discussed in Section 3.3.2, the SPINDLE memory over-
head is dependent on the percent of code pages that an ap-
plication normally maps into memory. SPINDLE causes the
application to use memory as if 100% of its code pages were
always resident. We measured this overhead on a single node
of Sierra using Pynamic, configured to load 495 libraries,
which produced an application with 488 MB of loadable

code. We modified this version of Pynamic to touch a certain
percent of its memory pages artificially, loading them into
its working set. This allowed us to compare SPINDLE mem-
ory overheads for different working set sizes. The amount of
memory used was measured by running Pynamic, touching
the pages and then checking how much remaining memory
could be allocated before the system began paging out to
make room for the new allocations.

Figure 4 illustrates two aspects of our memory overhead.
First, it shows that the memory overhead is predominately
a factor of the application’s working set size. In the worst
cases, where the application only has a small working set,
SPINDLE has loaded many unneeded pages into memory via
the RAM disk and produced overheads approximately equal
to the application’s size. In the best cases, where the appli-
cation needed most of its code, the RAM disk shares most
of its physical memory with the process and the amount
of memory available does not change significantly. Second,
Figure 4 shows that the memory overhead of the client and
server is relatively small. The data point at 100% represents
the case where the RAM disk memory is completely shared
with the virtual memory of the process. The remaining over-
head of 15.2 MB is approximately equal to the memory used
by the client and the server.

Spindle Memory Overhead

Amount of Code in Virtual Memory = 488MB

[
o
o

N
o
s}

w
=}
S

=
o
S

o

T T T T T T T T T Y
0 10 20 30 40 50 60 70 80 90 100
Percent of Code Resident in Physical Memory

Spindle Memory Overhead (MB)
15}
IS}

Figure 4: SPINDLE memory overhead

5. CONCLUSION

Dynamic linking and loading have gained broad accep-
tance in HPC due to their advantages for managing grow-
ing application complexity. However, the mechanisms used
to load shared objects today do not scale to the level re-
quired by the largest supercomputers. The tasks of locat-
ing and loading a dynamic shared object involve many file
system operations, and when a large number of processes
load many DSOs simultaneously, the resulting I/O storm
can cripple even the largest parallel file systems. This mani-
fests much like a denial-of-service-attack and can disrupt an
entire computing facility. SPINDLE addresses these critical
challenges by extending the dynamic loader to coordinate
its file system operations with an overlay network of file-
cache servers. It is transparent to applications and does not
require users to make changes to their applications or work-
flow. Our Pynamic experiments show that SPINDLE is highly
scalable with limited memory and performance overhead.

SPINDLE is already capable of addressing scalability chal-
lenges in our production environments with no apparent
scalability limit in sight. Thus, what lies ahead of us are
mostly engineering efforts to port, optimize, and customize

our solution to a broader range of high-end systems includ-
ing IBM Blue Gene machines with millions of cores. Already,
SPINDLE is well positioned for these efforts, as it is an inte-
grated, portable code base. Perhaps more importantly, this
basic architecture and our future work will pave the way for
a massively parallel OS/runtime loading service for future
exascale machines.

6. ACKNOWLEDGMENTS

This article has been authored by Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-
07NA27344 with the U.S. Department of Energy. Accord-
ingly, the United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or repro-
duce the published form of this article or allow others to do
s0, for United States Government purposes. (LLNL-CONF-
610893). Part of the compute time used in our experiments
was provided by the Jiilich Supercomputing Centre.

7. REFERENCES

[1] System V application binary interface.
http://refspecs.linuxbase.org/elf/gabidl.pdf.

[2] D. H. Ahn, D. C. Arnold, B. R. D. Supinski, G. L.
Lee, B. P. Miller, and M. Schulz. Overcoming
scalability challenges for tool daemon launching. In
Proceedings of the 37th International Conference on
Parallel Processing (ICPP ’08), pages 578-585, 2008.

[3] D. H. Ahn, M. J. Brim, B. R. de Supinski,

T. Gamblin, G. L. Lee, M. P. LeGendre, B. P. Miller,
A. Moody, and M. Schulz. Efficient and scalable
retrieval techniques for global file properties. In The
International Parallel and Distributed Processing
Symposium, Boston, MA, 2013.

[4] J. Brown, W. Scullin, and A. Ahmadia. Solving the
import problem: Scalable dynamic loading network
file systems. Talk at SciPy conference, Austin, Texas,
July 2012. http://pyvideo.org/video/1201/solving-the-
import-problem-scalable-dynamic-load.

[5] PMGR collective.
http://sourceforge.net/projects/pmgrcollective/
(visited April 2013).

[6] R. C. Daley and J. B. Dennis. Virtual memory,
processes, and sharing in MULTICS. Commun. ACM,
11(5):306—-312, May 1968.

[7] M. G. F. Dosanjh, P. G. Bridges, S. M. Kelly, and
J. H. Laros III. A peer-to-peer architecture for
supporting dynamic shared libraries in large-scale
systems. In Fifth International Workshop on Parallel
Programming Models and Systems Software for
High-End Computing (P252), 2012.

[8] M. Giampapa, T. Gooding, T. Inglett, and
R. Wisniewski. Experiences with a lightweight
supercomputer kernel: Lessons learned from Blue
Gene’s CNK. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010
International Conference for, pages 1 =10, Nov. 2010.

[9] IBM. General Parallel File System.
http://www-03.ibm.com/systems/software/gpfs/
(visited April 2013).

[10] G. Johansen and B. Mauzy. Cray XT programming
environment’s implementation of dynamic shared
libraries. In Cray User Group, Atlanta, Georgia, May
2009.

[11] S. M. Kelly, R. Klundt, and J. H. Laros III. Shared
libraries on a capability class computer. In Cray User
Group, Fairbanks, Alaska, May 2011.

[12] Lawrence Livermore National Laboratory. Advanced
simulation and computing Sequoia. https:
//asc.1lnl.gov/computing_resources/sequoia/
(visited April 2013).

[13] J. R. Levine. Linkers and Loaders. October 1999.

[14] P. Miller. Parallel, Distributed Scripting with Python.
In Proceedings of the 3rd Linux Clusters Institute
International Conference on Linux Cluster: The HPC
Revolution, Chatham, MA, USA, 2002. I[EEE
Computer Society Press, Los Alamitos, CA.

[15] J. A. Rathkopf, D. S. Miller, J. M. Owen, L. M.
Stuart, M. R. Zika, P. G. Eltgroth, N. K. Madsen,
K. P. McCandless, P. F. Nowak, M. K. Nemanic,

N. A. Gentile, N. D. Keen, and T. S. Palmer. KULL:
LLNL’s ASCI Inertial Confinement Fusion Simulation
Code. Physor 2000, ANS Topical Meeting on
Advances in Reactor Physics and Mathematics and
Computation into the Next Millennium, May 2000.

[16] rtld-audit man page. http://man7.org/linux/man-
pages/man7 /rtld-audit.7.html (visited April
2013).

[17] W. Yu, R. Noronha, S. Liang, and D. K. Panda.
Benefits of High Speed Interconnects to Cluster File
Systems: A Case Study with Lustre. In The
International Parallel and Distributed Processing
Symposium, Rhodes Island, Greece, 2006.

