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Abstract

Online steering systems allow to retrieve application data like intermediate results for visualization, and to modify
parameters during the runtime of the application. While most steering systems use a client/server paradigm, online
steering can favorably be modeled as a distributed shared memory with concurrent access by the application and the
online steerer. In this paper, this idea is formalized, focusing on the exploration of the consistency models and protocols
for the distributed shared memory. The behavior of the steering system is described by consistency models, which
also guarantee the data integrity of the application, both within a single process and between multiple application
processes. Depending on the integrity requirements, applications can choose the proper model and protocol. The
performance of our protocols is evaluated with a synthetic workload, which shows that the newly developed delayed
weak consistency is faster than the special weak consistency. Furthermore, the results prove that the invalidate
protocols of both consistency models are able to adapt themselves to the workload.
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1. Introduction

In recent times, scientific simulations increased
both in complexity and in the amount of data they
produce. Often the simulations run on batch systems
in clusters or computational Grids and do not sup-
port interactivity during the runtime of the simula-
tion. Online steering of an application enables the
visualization of intermediate results, performance
data, or other application data, and the invocation
of actions, e.g. modification of parameters by the
user at runtime of the job. The user can interactively
explore parameter realms, debug a program, or op-
timize performance. Because the user sees results

1 This work is partly funded by the Bundesministerium für
Bildung und Forschung (BMBF) as part of the German e-
Science Initiative (contract 01AK802E, HEP-CG)

earlier, the user can evaluate results earlier and re-
act before the job has finished. Thus, online steering
accelerates scientific research and saves ressources.

In this work application means the steered pro-
gram. A steerer is distinguished from a steering sys-
tem. A steerer is the interface to the user which vi-
sualizes data and offers the user the possibility to
enter commands, e.g. modifications of a parameter.
A steering system comprises all extentions to the
application, external components, specialized steer-
ers, and extentions to offline visualization tools to
enable steering.

Until now, various steering systems have been de-
veloped [3,5,8–11,18,20] for supporting the scientist
with interactive control over his simulation. Existing
systems provide means to retrieve data from the ap-
plication and invoke actions in the remote applica-
tion. Typically, the application is instrumented with
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calls to a steering library to enable the sending of
data to a remote visualizer, or to apply commands
issued by the user. The steering system manages the
data transport to a customized user interface. One
of the reasons why steering systems are not widely
used is the required effort to instrument a large ap-
plication for steering.

In this paper another approach is used, which
views steering similar to distributed shared memory
(DSM). Any steering is basically the change of state
of an application and a state change corresponds to
a change in memory. Thus, steering can be modeled
as a case for DSM because all steering actions can
be reduced to memory access operations.

The consistency model used in a DSM system de-
fines the order in which each process sees memory
operations. This defines the value which a read op-
eration must return. A DSM system is consistent ac-
cording to a consistency model if all read operations
return the values defined by the consistency model.

Every application process assumes that its data is
consistent to some application specific consistency
model. Based on this assumption, semantic relations
between data objects can exist which are essential
for correct execution of the application and mean-
ingful results. Data integrity means the consistency
and the correctness of semantic relationships be-
tween data object inside the application.

Data integrity is an important prerequisite to ob-
tain correct results from the application. This means
a steering system should ensure that the displayed
data is consistent in itself, and any modifications
must preserve the integrity of the data within the
application. If a data object is modified in a running
application without any synchronization with the
execution of the applications, severe errors may oc-
cur and the data integrity can be broken. To protect
the integrity, rules are needed which define the or-
der of access operations applied to the shared data.
The necessary rules define a consistency model for
the steering system. In this paper, consistency is
related to the interoperability between application
and steering system while integrity is related to the
correctness inside the application only.

A protocol for a consistency model is a descrip-
tion of the communication and algorithms which im-
plements the consistency protocol. The two main
strategies used for consistency protocols are the in-
validate and the update stategy.

Though various steering systems exist, until now
no consistency model for online steering exists. In
most cases the integrity problem is not addressed or

left to the user.
Based on the DSM-based steering model, the new

online steering system RMOST (Result Monitor-
ing and Online Steering Tool) [14] was developed.
It demonstrates the ability of the DSM-based ap-
proach to easily apply steering to existing applica-
tions and even use existing offline visualization tools
for online visualization.

By abstraction to a consistency model, the used
data exchange protocol implementation is hidden.
For a single consistency model several protocol
implementations are possible which have all the
modeled behavior but may use different strategies.
Thus, the protocol implementations can be ex-
changed transparently, e.g. switching from a push
strategy to a pull strategy.

2. Formalism for the DSM Based Model for
Online Steering

In online steering, the application and the steerer
both access the same data. If the steerer and the
application run in the same address space, this is a
trivial task. But if the steerer and simulation belong
to different address spaces, e.g. if they are located
on different machines, a mechanism to access the re-
mote data is needed. Because two processes access
the same data, online steering can be modeled as
DSM. The advantages of the DSM model are that
the complexity of distributed data is hidden from
the user of the steering system, and it appears to be
accessing only local data for the steerer and the ap-
plication. The steering system handles the commu-
nication and it supports the programmer with the
consistency guarantees to maintain data integrity.

In the DSM based model of online steering, two
kinds of processes exist with different roles and prop-
erties. Firstly, n application processes p1, ..., pn ex-
ist. The application may synchronize p1, ..., pn with
any mechanism, e.g. via messages, or shared mem-
ory. However, the synchronization within the appli-
cation is out of the scope of this work. Secondly,
m steering processes pn+1, ...pn+m exist, each rep-
resenting a steerer in a collaborative environment.
The data objects which can be visualized or steered
reside in the distributed shared memory. Each data
object x has a home location H(x) ∈ p1, ..., pn which
is one of the application processes. The steering pro-
cesses are not chosen for home locations, because the
steerers may detach and thereby causing the home
location to become inaccessible.
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Three kinds of memory operations exist: read op-
erations r, write operations w, and synchronization
operations s. Read and write operations are denoted
as o(p, x, v) where o ∈ {w, r} specifies the operation
type, p is the process that performs the operation,
x is the memory location, and v is the value that is
written or read. Synchronization operations are de-
noted as s(p). A process pi is viewed as a sequence
of memory operations Si = {o1, o2, ...} with oi ∈
{w, r, s}. A process sees a write operation w if a cur-
rent read operation would return the value written
by w. A write operation w is visible to a process p if
p can see w.

Each application process pi is associated with
a logical clock Ti, which indicates the progress of
the process. Ti is incremented at synchronization
operations. An epoch is the interval between two
consecutive clock increments. The time Tmin =
min(T1, ..., Tn) is the minimum time of all applica-
tion processes. The time Tmax = max(T1, ..., Tn) is
the maximum time of all application processes.

3. Data Integrity Conditions

In this section, the effects that might affect the
data integrity are analyzed which lead to two in-
tegrity conditions. The first one is the intra-process
condition, and the second one is the inter-process
condition.

3.1. The Intra-Process Condition

The intra-process condition requires that the
data in the application must not be modified exter-
nally during certain operation intervals, and that
the write operations of the application to shared
objects become only visible if the data is in a well-
defined state. For example, assume one formula is
computed where one variable x appears at different
places in the formula. The result can only be correct
if the value of x stays the same during the whole
computation. Another case could be a numerical
n-body simulation. While it is allowed to modify
parameters between each simulated time step, the
value should stay the same inside each time step.

Also the modifications by the application to
shared data should become visible only at well de-
fined places. Imagine several properties of different
input objects are computed. If the object is visible
and displayed after the computation of the first few
properties while the other properties stem from an-

other input, the displayed result is propably incor-
rect and can be misleading. Thus, to preserve the
intra-process condition, changes of the application
must only become visible at well defined points, and
changes by the steerer must only be applied by the
application at well-defined synchronization points
(SP). Typically, one epoch is bounded by two SP,
which implies that SPs match the incrementations
of the logical clock.

3.2. The Inter-Process Condition

The inter-process condition considers differences
in progress of different processes. Firstly, it requires
that write operations of the steering processes must
be seen in all processes at the same time step. Sec-
ondly, values of displayed data objects must stem
from the same epoch.

For example, suppose a parallel simulation it-
erates over several time steps and each process
computes a part of the overall result. If changing a
boundary parameter, one would like to change this
parameter for all processes in the same epoch. If a
steerer changes the value of the parameter in the
DSM, the system must ensure that the modification
is viewed by all processes at the same epoch.

Another case occurs if a steerer wants to display
a distributed object which is modified by several
processes, and each process computes a part of the
whole object. The steerer must only see the write
operations of all processes up to Tmin to retrieve an
internally consistent data set.

4. Consistency Models

To ensure the integrity of the data in online steer-
ing, each process must view access operations to the
shared memory according to certain rules. For each
given set of access operations, a consistency model
is defined through the possible orders in which each
process is allowed to see the memory accesses [19].
Thus, a consistency model can be used to maintain
data integrity. In this section, consistency models
are evaluated which fulfill the requirements for data
integrity in online steering. One consistency model
will not satisfy all cases, because not all data objects
require both integrity requirements analyzed in Sec.
3. Some data objects require no integrity conditions
and can be treated completely asynchronous, some
data objects require only the intra-process condi-
tion, and some data objects require both conditions.
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Thus, different consistency models are appropriate
in each of these cases. The case that data objects
require only the inter-process condition is not con-
sidered, because the inter-process condition implies
the existence of epoches. The transition points be-
tween two epoches define the SPs where values may
be read or modified.

4.1. Consistency for the Intra-Process Condition

In case the application uses message passing,
each application-process has its own memory. If the
application uses shared memory, it must have its
own consistency model which can not be changed
by the steering system. The shared memory is ac-
cessed through one process. Because in the intra-
process condition no requirements for synchroniza-
tion between application processes must be con-
sidered, communication happens only between one
application-process and one steerer. In case multi-
ple processes exists, each application process and
the steerer have a shared memory disjunct from the
shared memory of another application process and
the steerer.

The intra-process condition allows the application
and distribution of updates only at specified SPs.
The desired existence of specified SPs leads to two
new consistency models which are similar to weak
consistency [6]. While the application should always
see its most recently written value, two possibilities
exist for the behavior of the steerer, which do both
implement the intra-process condition. Formally the
difference occurs in the following case:

Let p1 be an application process and let
p2 be a steering process that viewed the ac-
cesses w(p1, x, 2), and s(p1). Now, p2 executes
s(p2), w(p2, x, 1), r(p2, x, ?) before it sees another
s(p1). Which value should r(p2, x, ?) return?

4.1.1. Special Weak Consistency
r(p2, x, 1) returns the value recently written by

the same process. This leads to weak consistency
with the modification that updates are applied ex-
actly at the next synchronization operation, instead
of latest at the next synchronization operation.
Many implementations do fullfill this stricter defini-
tion, because of performance reasons (aggregation
of modifications). If two modifications by a steering
process and a application process conflict, the mod-
ification of the steerer is given priority. This model
is called special weak consistency (SWC).

4.1.2. Delayed Weak Consistency
r(p2, x, 2) returns the current value of the appli-

cation. The modeled behavior is the one of a steerer
which only issues a command to change a value
to the application and sees its own modification
only after the application confirmed the modifica-
tion. In this case, the modification by the steerer is
distributed at the next SP of the steerer. After the
application received the modification command, it
applies the modification at its next SP and returns a
confirmation to the steerer. The steerer applies the
new value at the next SP after receiving the confir-
mation of an application process. Instead of confirm-
ing single modifications, the application can confirm
all modifications distributed by a SP at once. The
execution order of access operations performed by
p2 until it reads r(p2, x, 1) would be:

w(p1, x, 2), s(p1), s(p2), w(p2, x, 1), r(p2, x, 2),

s(p2), s(p1), s(p2), r(p2, x, 1)

The SP needs to only be Pipelined RAM consis-
tent [13], because the only request to the consistency
points is that other processes see the consistency
points of one process in the order they occur in that
process. The SPs of different processes may be seen
in different orders by different processes.

This model delays the visibility of the write oper-
ation after the next synchronization operation, thus
it is called delayed weak consistency (DWC).

Interestingly, the sequential consistency [12] is too
strong for the intra-process condition. Sequential
consistency requires that all processes see all write
operations in the same order. In most DSM systems,
the usage of relaxed consistency models is driven by
the better performance of the relaxed models com-
pared to strong consistency models, but the pro-
grammer wants his program to behave as if sequen-
tial consistency [12] would be used. In the case of on-
line steering, strong consistency would not provide
the desired behavior.

4.2. Consistency for Both Conditions

In this case it must be ensured that the steer-
ers retrieve all values from the same epoch, and all
application processes apply all modifications at the
same epoch. At every given time, each epoch can be
assigned to one of the following three groups:
– The past are those epoches T that are finished by

all application processes: T < Tmin.
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– The future are those epoches T that are not yet
entered by any application process: T > Tmax.

– The presence are the epoches T that do nei-
ther belong to the past nor to the future: T ∈
[Tmin, Tmax].
Each write operation w is tagged with a time

stamp T (w). Write operations of an application pro-
cess p will be tagged with the timestamp of the pro-
cess T (w) = T (p). Write operations of steering pro-
cesses will be tagged with Tmax +1. Thus, each data
object has a schedule of values assigned to it. A read
operation of data object x by a steering process will
always return the most recent value v from the past.
Read operations of an application process p at time
step T (p) will always return the most recent value v
from the viewpoint of the process.

This consistency model is called schedule consis-
tency. Steerers can only write to the future and read
from the past. It has the effect, that modifications
are not seen immediately, but after a delay which
depends on the length of the presence. The delayed
weak consistency (DWC) is a special case of the
schedule consistency with the presence comprising
only one epoch. Formally, this effect is caused by
an reordering of write and read operations in the
steering processes. Write operations that occur be-
fore a read operation in the program order may be
seen later than the read operation. This consistency
model is based on a algorithm from CUMULVS [17]
but was not defined as a consistency model before.

4.3. Consistency with no Integrity Conditions

Besides parameters or results which probably
have the intra-process or inter-process condition,
data objects with a producer-consumer access pat-
tern exists which require none of the integrity condi-
tions. These data objects have one producer, which
is the only process writing to these data objects, and
one or more consumer processes who read this data
object. For example, processor load or other mon-
itoring data has neither the intra-process nor the
inter-process condition. For those data the update
intervals or delays implied by the weak or sched-
ule consistency may be inappropriate. These data
objects are independent from other data objects
by definition, thus Pipelined RAM consistency [13]
should be sufficient. Pipelined RAM consistency
ensures that all processes see the write operations
of a process p in the order they are executed by p.

5. Consistency Protocols

The development of the protocols focuses on the
consistency models for the intra-process condition.
In the intra-process condition the shared memory
exists between the steerer and one application pro-
cess.

In all described protocols, each process has a local
copy of the shared data object in its local memory.
Furthermore, it is assumed, that all messages are
received in the order they are sent.

5.1. Update Protocol for the SWC

In the SWC, updates for a modified data object
are distributed at the next SP. Thus, a write oper-
ation sets a modified flag for the data object and
stores the new value in the local copy.

At a SP, the new values of all received updates
are stored in the local copy. Then the current values
of all modified data objects are distributed and the
modified flag is cleared. If a process receives an up-
date, the value is buffered until the next SP, where
the new value is applied. Read operations return al-
ways the current value of the local copy.

A conflict occurs in a SP if a process has modified
a data object x in the last epoch and received an
update (or invalidate) message for x in the same
epoch. If a conflict occurs in a SP of the steering
process, updates are discarded. If a conflict occurs in
an application process, the update is applied and the
modification flag is cleared, preventing the update
for this data object to be sent.

To ensure the order of the SPs, a synchronization
token is exchanged between the processes. A process
can only execute a SP if it possesses the synchro-
nization token else it will send a request for it and
block until the token is received.

5.2. Invalidate Protocol for the SWC

In the invalidate protocol, a write operation on x
sets the modification flag for x and stores the new
value. At the next SP, an invalidate notification is
sent if the current state indicates that the remote
process has not invalidated its local copy. Further-
more, the current value of x is copied to LS(x).
LS(x) is a memory location which contains the value
of x at the last SP.

The invalidate protocol uses the same mechanism
for the ordering of the SPs as the update protocol. If
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a request for the synchronization token is received,
LS(x) is copied to AKT (x) which represents the
most recent modification of this process which is
visible by the other process.

If the application process receives an invalidation,
the local value of the data object is marked as in-
valid. When a read operation wants to read the in-
valid data object, it requests an update from the
other process and blocks until it receives a response.
If the steerer receives a request, it sends the value of
AKT (x) to the application. If the steering process
receives an invalidation the reaction is analogous.

5.3. Update Protocol for the DWC

In the DWC, no total ordering of SPs exists, but
each process p has a counter Tp of its local SPs, and
Tp(s) is the timestamp of the SP s.

The application and the steerer act differently on
a write operation. If the job writes a data object x,
the new value is stored in the local copy, and the
modification flag is set. At the next SP, the modified
data objects are distributed like in the SWC.

If the steering process p modifies an object x,
the new value is not stored in the local copy of x,
but stored in LW (x) which contains the most re-
cent modification of x. At the next SP s1, LW (x) is
copied to LS(x, Tp(s1)) which contains the value of
x at s1, and LW (x) is sent to the application process
q together with Tp(s1). Because one process may ex-
ecute several SPs before the modification is applied,
multiple values from different SPs can be buffered.

If q receives the updates of s1, it applies either all
updates of s1 at a single SP or none. If the updates
of s1 are applied, q returns a confirmation which
contains Tp(s1). When p receives the confirmation it
knows that q applied all updates made by p until s1.
At its next SP it copies the value from LS(x, Tp(s1))
to the local copy of x.

Conflicts can only occur in the application process
when the application process has modified an object
and receives an update from the steerer in the same
epoch. In this case the update is applied and the
modification of the application is discarded.

5.4. Invalidate Protocol for the DWC

Because no total ordering of the SPs exist, each
process p has its own clock Tp which is increased
at each SP of p. At the end of each SP, a SyncEnd
message is sent which contains the current value of

Tp. If the SyncEnd message is received by the remote
process q, it stores the received value of Tp in Rq.
To acknowledge a SyncEnd message, q appends Rq

to its next SyncEnd message in addition to Tq.
In the invalidate protocol for the DWC, each pro-

cess p must remember the state V Lp(x) of the value
of the local copy of x, and V Rp(x) which is the state
of the local copy at the remote process of x.

First, it is described when the steering process p
performs a write operation to a data object x. In
this case, a modification flag is set and the new value
is stored in LW (x) like in the update protocol. At
the next SP s1, the value of LW (x) is stored in
LS(x, Tp(s1)) which is still the same procedure like
in the update protocol. If V Rp(x) is valid, an inval-
idate message is sent and V Rp(x) is set to invalid.

If the application q receives an invalidate message,
it sets V Lq(x) to invalid and V Rq(x) to valid at the
next SP s2 after receiving all data from s1. At the
end of s2, q acknowledges s1 by sending a SyncEnd
message.

When p receives the acknowledgment of s1, it
knows that q has either applied the invalidations
from s1, or the data objects were already invalidated
before, and that q sees the values which were written
in the epoch before s1. Because the modifications of
p are only transferred on a read operation of q, p
must remember AKT (x) which is the last modifica-
tion q sees. Thus, p stores LS(x, Tp(s1)) in AKT (x).
At the next SP after receiving the acknowledgment
of s1, p applies the value of LS(x, Tp(s1)).

A read operation of q returns the local copy of x
if V Lq(x) is valid else a request to p is sent which
returns AKT (x), and set V Rp(x) to valid. After the
response has been received by q, the local copy is
updated, V L(x) is set to valid, and the new value is
returned. If a process answers to an update request,
further modifications can be stored in LS(x, ∗) from
a later SP. For these modifications, no invalidate
messages have been sent so far. Thus, if another
modification is buffered in LS, an invalidate mes-
sage with the timestamp of its required application
is appended to the update message.

If the application q modifies a data object x, the
application stores the new value in the local copy
of x. In addition, the modification flag is set, and
V Lq(x) is set to valid.

If an invalidate message is received in the cur-
rent epoch, any modification flag for x is removed
and V Lq(x) is set to invalid at the next SP s3. This
ensures the priorization of the steerer in case of a
conflict. Else, the current value of x is stored in
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LS(x, Tq(s3)). If V Rq(x) is valid, an invalidate mes-
sage is sent and V Rq(x) is set to invalid. If p receives
the invalidation, p sets V Lp(x) to invalid at its next
SP after receiving all data from s3. When q receives
the acknowledgment for s3, it stores LS(x, Tq(s3))
in AKT (x) which is returned on an update request.

Suppose q performs a write operation on x,
V Lq(x) was invalid and the next SP is s5. Then,
p could perform another write operation on x and
afterwards a SP s4. In s4 no invalidate message was
sent for x because V Rp(x) was already invalid. If
the SyncEnd message of s4 is received by q before
q executes s5, V Lq(x) should be invalidated again,
but the invalidate message was not sent.

As a solution, q sends a request for validation ap-
proval to p if V Lq(x) is invalid and q modifies x.
If p receives an approval request, it sets V Rp(x) to
valid, checks for already buffered modifications, and
appends the invalidation time if a modification is
buffered. If approval requests were sent in an epoch,
the next SP blocks until all approvals are received.

The complete protocol is listed in Listing 1. It
shows the action on each possible event (read, write,
synchronization, and receipt of messages). It is as-
sumed that the reaction procedures of one process
are mutual exclusive, except at the wait statements
where messages can be received and processed.

Listing 1. invalidate protocol for the delayed weak consis-
tency

onRead (x ) :
i f VL(x ) = i nv a l i d

send Request ( x )
wait u n t i l VL(x ) = va l i d

re turn Value (x )
onWrite (x , va l ) :

i f Job
i f VL(x ) = i nv a l i d

s e t VL(x ) := va l i d
send ApprovalRequest ( x )
s e t needApproval := true

s e t Value (x ) := va l
s e t LW(x) := va l
s e t Modif ied (x ) := true

onSync :
T ++
i f Job

f o r a l l x
wait u n t i l needApproval ( x ) = f a l s e

f o r a l l x with Apply (x ) = true
s e t Apply (x ) := f a l s e
s e t Value (x ) := AKT(x )

s e t VL(x ) := true
f o r a l l (x , t ) in BufInv with t <= R

remove (x , t ) from BufInv
i f not ( S t e e r e r and Modif ied (x ) )

s e t Modif ied (x ) := f a l s e
s e t VL(x ) := i n v a l i d
s e t VR(x ) := va l i d

f o r a l l x with Modif ied (x ) = true
s e t LS(x ,T) := LW(x)
i f VR(x ) = va l i d

send Inva l i d a t e (x ,T)
s e t VR(x ) := i n v a l i d

send SyncEnd (T,R)
onRecvSyncEnd (SyncNum , DoneSyncs ) :

s e t R := SyncNum
fo r a l l x and t <= DoneSyncs

i f e x i s t LS(x , t )
s e t AKT(x ) := l a s t LS(x , t )
d e l e t e a l l LS(x , t )
i f S t e e r e r

s e t Apply (x ) := true
onRecvInva l idate (x , t ) :

add (x , t ) to BufInv
onRecvRequest ( x ) :

i f e x i s t s LS(x , t )
send Inva l i d a t e (x , t )

e l s e s e t VR(x ) := va l i d
send Update (x , AKT(x ) )

onRecvUpdate (x , va l ) :
s e t Value (x ) := va l
s e t VL(x ) := va l i d

onRecvApprovalRequest ( x ) :
i f e x i s t s LS(x , t )

send Inva l i d a t e (x , t )
e l s e s e t VR(x ) := va l i d
send ApproveValidate ( x )

onRecvApproveValidate ( x )
needApproval ( x ) := f a l s e

6. The RMOST Steering System

RMOST (Result Monitoring and Online Steering
Tool) 2 [14] is an online steering system for Grid jobs
of the High Energy Physics (HEP) experiment AT-
LAS [1], which is developed as part of the HEPCG 3

project of Germany’s D-Grid initiative [2,15]. It con-
sists of an application independent implementation

2 RMOST is available at http://hep.physik.uni-
siegen.de/grid/rmost
3 High Energy Physics Community Grid
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of the presented DSM approach for online steering,
and a thin integration layer into the ATLAS soft-
ware. Through the DSM-based approach it is pos-
sible to enable steering of Grid jobs in the ATLAS
experiment without modification of the source code.
Currently, SWC and DWC with one steering process
are supported.

Its architecture consists of four main layers:
(i) The communication layer realizes a commu-

nication channel between the application and
the steerer. The Grid communication channel
of RMOST is described in [16].

(ii) The data consistency layer implements a DSM
system which supports multiple consistency
protocols. Currently, protocols for the SWC,
DWC, pipelined RAM consistency, and on de-
mand data exchange exist. New protocols can
be added by developing a class which imple-
ments reactions to possible events like read,
write, SP, or the receipt of a message. Each
data object must be registered and the used
protocol can be defined individually for each
data object.

(iii) The data processing layer is a placeholder for
any data processing performed by the steering
system like filtering, or automated evaluation.

(iv) The data access layer provides tools for data
access. For example, in RMOST a preloaded
library replaces standard library calls in order
to observe file accesses. Another (not yet im-
plemented) possibility is to monitor method
calls by modifying a classes’ virtual table.

The ATLAS [1] experiment is part of the Large
Hadron Collider (LHC) at CERN. Besides many
other, the most prominent goal of the ATLAS ex-
periment is to search for the Higgs particle which is
responsible for the masses of particles.

The experiment’s software framework Athena [7]
was created for the reconstruction of the data. The
processed data consists of collision events which can
be computed independently. In general, the desired
results consists of, e.g. histograms with statistics
over several thousands events.

The user composes his job from different compo-
nents, provided by the Athena framework [7]. The
two main types of components are called algorithms
and tools. The composition is defined in a so called
job options file. Furthermore, Athena can be ex-
tended with customized components contained in a
shared library.

The ROOT toolkit [4] is commonly used for offline
visualization of physics results. It provides an inter-

face to extend ROOT with new classes which are
located in a shared library and loaded dynamically.

The ROOT toolkit and the Athena framework
are huge collections of source code and are already
installed at all ATLAS Gridsites. These software
is still under development. Source code instrumen-
tation would put a large additional effort on the
developers of these packages. Because the soft-
ware is preinstalled on all ATLAS Gridsites, they
do not want another group make modifications
for research which could break their production
system. Furthermore, general reservations against
Online-Steering on a batchsystem in the Grid exist
preventing RMOST from being integrated in the
Athena framework. For the integration of RMOST
in the Athena framework a new component RM Spy
was developed which can be applied to the Grid job
by editing the job options file.

Steering is made available to ROOT by dynam-
ically loading a library with interface classes for
ROOT to RMOST. It allows to adjust steerable pa-
rameters, or view progress information from the job.
By preloading the RMOST file access library, the
steering system intercepts file accesses and fetches or
updates the according parts of the file. Thus, ROOT
which was intended to be a post-mortem analysis
tool, can be used for online visualization of interme-
diate results and steering without any modifications
to the source code.

7. Performance Evaluation

The performance of the described protocols is
measured with a synthetic workload. A test appli-
cation and the steerer registered 5 data objects of
the same size and has performed 1000 SPs. In each
epoch, the data objects are written or read with a
probability of 0.75. If one process has finished its
1000 iterations before the other process has fin-
ished, it continues to process SPs without write or
read operations until the other process has finished.
This experiment was performed for data objects
with 10 Bytes and 100 000 Bytes size. The results
are shown in Tab. 1. Additionally, the performance
of the update protocol of the pipelined RAM con-
sistency is measured which simply transfer the data
on each write operation.

Next, the results for 10Bytes long data objects
are discussed. The DWC protocols are significantly
faster than the SWC protocols, due to the stricter
ordering of the SPs in the SWC. The updated proto-
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Protocol 10Bytes 100000Bytes

SWC update 117.34 s 412.25 s

SWC invalidate 61.84 s 68.51 s

DWC update 24.16 s 395.82 s

DWC invalidate 46.71 s 45.70 s

PRAM C. update 22.30 s 249.84 s

Table 1
Measured run-time for 1000 iterations of the test program
with data objects of 10 Bytes and 100 000Bytes size.

col of the SWC exchanges the synchronization token
between each SP and must wait until it has received
the token again. Thus, the processing of all SPs is se-
quential, and additional time for 1000 roundtrips is
contained in the measured time. If the application,
and the steerer would have longer intervals between
the SPs than 20 ms as for the test programs, the ex-
ecution of a SP had more overlap with the comput-
ing of the code between the SPs of the other process
which might reduce the difference between the SWC
and DWC update protocols.

The SWC invalidate protocol uses nearly half the
time of the SWC update protocol though it uses the
same synchronization mechanism. In the invalidate
protocol, the read operations block until an answer
is received. In this time, no synchronization tokens
are requested. Thus, the other process can process
multiple SPs in a row without waiting for the syn-
chronization token. In contrast to the update pro-
tocol, the invalidate protocol executes sequences of
several SPs between each synchronization exchange.
The roundtrip times saved are larger than the wait-
ing time for an answer, reducing the run-time.

In the DWC, different processes can not block
each other for synchronization. The performance of
the DWC update protocol is close to the perfor-
mance of the PRAM consistency protocol. The in-
validate protocol takes nearly twice as long, because
of waiting times for read operations.

When the size of the data objects is increased, the
run-time of the update protocols also increases due
to the higher amount of data transferred. The in-
crease of the data size has only little effect on the
performance of the SWC invalidate protocol and
the DWC invalidate protocol is not affected at all.
Larger data objects imply longer transfer times lead-
ing to longer waiting times for read operations. In
between, the other process can perform more itera-
tions, of which only the last modification leads to a
new invalidation. Thus, invalidations, and blocking
update requests are less frequent.

As a consequence invalidate protocols dynami-
cally adapt to the available network bandwidth and
data volume, by reducing the update frequency. In
case of online steering, where a user wants to see the
current state of an application, the user must not
see every intermediate step, but gets independent of
the data volume and available network bandwidth,
the best possible update frequency.

8. Related Work

In this paper a new model for online steering was
presented and implemented in RMOST. RMOST
is the first DSM-based steering system. However,
some steerers provide tools to support the user to
maintain the integrity of the data.

Most similar to the presented work is the
Pathfinder [10] steering system. Steering actions
and the program’s execution are both viewed in
terms of atomic transactions. They address the is-
sue of consistently applying steering actions to a
parallel message passing program. A steering action
is consistent if it is applied in a consistent snapshot
of the parallel program. An algorithm is presented
which detects inconsistent steering actions. The ma-
jor issue is to define points in a parallel application
where steering actions can be consistently applied.
As a result a total ordering of all transactions exists,
which leads to sequential consistency.

CUMULVS [9,17] is a steerer which allows to
make checkpoints of a parallel program. An algo-
rithm is presented that captures distributed data
objects consistently by stopping processes that have
already processed ahead until all processes reached
an equal progress. While this algorithm is similar
to the presented schedule consistency, CUMULVS
has no DSM-based model for steering.

EPSN [8] requires a description of the structure
of the application. For each steerable data object,
areas are defined where the data object may be read
or changed. The source code of the application must
be instrumented with markers to the abstract struc-
ture. VASE [5] follows similar principles. The in-
tegrity problem is brought to an abstract level which
can simplify the problem for the user. However, the
decision where a data object may be accessed with-
out disrupting integrity remains with the user. Both
have no DSM-based approach for steering.

In RealityGrid [11] a client/server based steering
system was developed. The steering library only in-
forms the application on events which must be han-
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dled by the user. The user may use predefined library
calls to react on events, but a DSM like mechanism
does not exist. The steering actions are performed
in a single steering library call to reduce the effort of
instrumentation. Because events are processed in a
single function, by default, weak consistency is im-
plicitly realized.

9. Conclusions and Future Work

In this paper, online steering is viewed as accesses
to a distributed shared memory. The behavior of the
protocols are defined through the used consistency
model. It provides guarantees for data integrity, the
possibility to easily apply online steering to existing
applications, and to enable offline visualization tool
for online visualization.

For each model, several protocol implementations
are possible which can be exchanged transparently
for the application. For sequential jobs, the delayed
weak consistency (DWC) and the special weak con-
sistency (SWC) were developed and protocols with a
pull and a push strategy are implemented and eval-
uated. Hereby, the DWC showed the better perfor-
mance. The invalidate protocols dynamically adapt
to the network bandwidth and to the data volume.
In existing event-based steerers the overloading of
the bandwidth can be problem which is solved with
invalidate protocols.

Because exchanging the protocol for the same con-
sistency model is transparent, it offers the possibil-
ity to optimize the performance by selection of the
best protocol. E.g., the DWC update protocol has
a smaller overhead for small data volumes while the
invalidate protocol perfrom better if the data volume
is large. This is a possible area of further reseach.

Until now, the focus was on the communication
between a steerer and an application process, but the
model can also be applied to multi-process applica-
tions and collaborative steering. DSM-based steer-
ing with multiple processes and evaluation of the
schedule consistency is a topic for future research.
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