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Abstract

The EXPERT performance-analysis environment provides a complete tracing-based solution for automatic per-

formance analysis of MPI, OpenMP, or hybrid applications running on parallel computers with SMP nodes. EXPERT

describes performance problems using a high level of abstraction in terms of execution patterns that result from an

inefficient use of the underlying programming model(s). The set of predefined problems can be extended to meet ap-

plication-specific needs. The analysis is carried out along three interconnected dimensions: class of performance be-

havior, call tree, and thread of execution. Each dimension is arranged in a hierarchy so that the user can investigate the

behavior on varying levels of detail. All three dimensions are interactively accessible using a single integrated view.
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1. Introduction

Coupling SMP systems combines the packaging

efficiencies of shared-memory multiprocessors with

the scaling advantages of distributed-memory ar-
chitectures. The result is a computer architecture

that can scale more cost-effectively in size. Un-

fortunately, these systems come at the price of a

more complex programming environment to deal

with the different modes of parallel execution:

shared-memory multithreading vs. distributed-
* Corresponding author. Tel.: +1-865-974-8992; fax: +1-865-

974-8296.

E-mail addresses: fwolf@cs.utk.edu (F. Wolf), b.mohr@fz-

juelich.de (B. Mohr).
1 This work was done while Felix Wolf was a Ph.D. student

at Forschungszentrum J€uulich.

1383-7621/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S1383-7621(03)00102-4
memory message passing. As a consequence, per-

formance optimization becomes more difficult and

creates a need for advanced performance tools that

are custom made for this class of computing en-

vironments. While performance tools exist for
shared-memory systems and for distributed-mem-

ory systems, solving performance problems on

parallel computers with SMP nodes is not as

simple as combining two tools. When dealing with

hybrid (MPI/OpenMP) parallel executions, per-

formance problems arise where an integrated view

is required. Current state-of-the-art tools such as

VGV [1] can provide such an integrated view in-
cluding the necessary monitoring capabilities, but

suffer from performance-information overload,

unable to abstract performance problems from

detailed performance data in an integrated hybrid

framework.
ed.
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The EXPERT performance-analysis environ-

ment 2 is able to automatically detect performance

problems in event traces of MPI [5], OpenMP

[6], or hybrid applications running on parallel

computers with SMP nodes as well as on more

traditional non-SMP or single SMP systems. Per-
formance problems are represented as execution

patterns that correspond to situations of inefficient

behavior. These patterns are specified as com-

pound events which are input for an automatic

analysis process that recognizes and quantifies the

inefficient behavior in event traces. Mechanisms

that hide the complex relationships within com-

pound-event specifications allow a simple de-
scription of complex inefficient behavior on a high

level of abstraction. In addition, the set of prede-

fined performance problems can bed extended to

meet individual (e.g., application-specific) needs.

Like Paradyn [7], which searches for perfor-

mance problems along different program-resource

hierarchies including the call graph [8], EXPERT

takes advantage of decomposing the search space
into multiple hierarchical dimensions. The analysis

process of EXPERT automatically transforms the

event traces into a three-dimensional representa-

tion of performance behavior. The first dimension

is the kind of behavior. The second dimension is

the call tree and describes the behavior�s source-

code location and the execution phase during

which it occurs. Finally, the third dimension gives
information on the distribution of performance

losses across different processes or threads. The

hierarchical organization of each dimension en-

ables the investigation of performance behavior on

varying levels of granularity. Each point of the

representation is uniformly mapped onto the cor-

responding fraction of execution time, allowing the

convenient correlation of different behavior using
only a single view. The user can interactively ac-

cess all the hierarchies constituting a dimension

of performance behavior using standard tree

browsers.
2 The work on EXPERT is carried out as a part of the

KOJAK project [2,3] and is embedded in the IST working

group APART [4].
The remainder of this article is organized as

follows: First, we consider related work in Section

2. Then, we describe the overall architecture of our

analysis environment in Section 3. In Section 4, we

present the abstraction mechanisms used to sim-

plify the specification of complex situations rep-
resenting inefficient performance behavior. After

that, we introduce the actual analysis component

and how it can be extended to deal with applica-

tion-specific requirements in Section 5. While

Section 6 lists limitations of the current imple-

mentation, Section 7 proves our concept by ap-

plying it to four realistic codes. Finally, we

conclude the paper in Section 8.
This work evolved from a Ph.D. thesis project

at Forschungszentrum J€uulich. A more detailed and

comprehensive description of this article�s contents
can be found in the thesis document [9].
2. Related work

The multidimensional hierarchical decomposi-

tion of the search space for performance problems

has a long tradition. Miller et al. [7] developed the

W 3 search model as the basis of the online per-

formance-analysis performed by Paradyn. The W 3

model describes performance behavior along the

dimensions performance problem, program re-

sources including the call graph [8], and time.
Performance problems are expressed in terms of a

threshold and one or more metrics such as CPU

time, blocking time, message rates, I/O rates, or

number of active processors. The different metrics

can be specified in a flexible manner using the

MDL metric-description language [10]. The main

accomplishments of EXPERT in contrast to Par-

adyn is the description of performance problems in
terms of complex event patterns that go beyond

counter-based metrics. Also, the uniform mapping

of arbitrary performance behavior onto execution

time allows the correlation of different behavior in

a single view.

Espinosa [11] implemented an automatic

trace-analysis tool KAPPA-PI for evaluating the

performance behavior of MPI and PVM message-
passing programs. Here, behavior classification is

carried out in two steps. At first, a list of idle times
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is generated from the raw trace file using a simple

metric. Then, based on this list, a recursive infer-

ence process continuously deduces new facts on an

increasing level of abstraction. Finally, recom-

mendations on possible sources of inefficiencies are

built from the facts being proved on the one hand
and from the results of source-code analysis on the

other hand.

Vetter [12] performs automatic performance

analysis of MPI point-to-point communication

based on machine learning techniques. He traces

individual message-passing operations and then,

classifies each individual communication event

using a decision tree. The decision tree has been
previously trained by microbenchmarks that

demonstrate both efficient as well as inefficient

performance behavior. As opposed to this ap-

proach, EXPERT draws conclusions from the

temporal relationships of individual events in a

platform-independent way, which does not require

any training prior to analysis.

JavaPSL [13] has been designed by Fahringer
et al. to specify performance properties based on

the Java programming language and to be used in

the Aksum tool. Whereas EXPERT uses Python

to provide a uniform interface to performance

properties, JavaPSL exploits similar mechanisms

of the Java language, such as polymorphism, ab-

stract classes, and reflection. In contrast to EX-

PERT, which concentrates on compound-event
analysis, JavaPSL puts emphasis on the definition

of performance properties based on existing ones

(e.g., by defining metaproperties).

Much work has been done on the visualization

of performance data. Apart from standard displays

of profiles and event traces, such as Apprentice

[14] and VAMPIR [15] (Fig. 7), and call-graph-

based profile displays, such as Xprofiler [16], very
sophisticated performance data displays tried to

approach the problem of hiding tool complexity

behind simple but still expressive presentation

techniques. Solutions range from animated dis-

plays, such as those included in ParaGraph [17], to

complete virtual reality environments that allow

an immersive investigation of the performance

space, such as Virtue [18]. However, the emphasis
of EXPERT was not the invention of a new dis-

play in a technical sense. After all, the use of
tree browsers is not revolutionary and even the

coloring of nodes in a tree has been previously

applied, for example, in the xlcb [19] corefile

browser. However, EXPERT shows that an intu-

itive but still insightful perception of performance

behavior can be achieved through uniformity and
simplicity both in the logical model of the perfor-

mance space as well as in its visual representation,

which is realized just by coupling standard tree

browsers.
3. Overall architecture

The EXPERT performance-analysis environ-

ment is depicted in Fig. 1. The different compo-

nents are represented as boxes with rounded

corners and their inputs and outputs are repre-

sented as paper sheets with the upper-right corner

turned down. The arrows illustrate the whole

performance-analysis process from instrumenta-

tion to result presentation.
The EXPERT analysis process is composed of

two parts: a semi-automatic multilevel instrumen-

tation of the user application followed by an au-

tomatic analysis of the generated performance

data. The first subprocess is called semi-automatic

because it requires the user to slightly modify the

makefile.

To begin the process, the user supplies the ap-
plication�s source code, written in either C, C++,

or Fortran, to OPARI, which performs automatic

instrumentation of OpenMP constructs and redi-

rection of OpenMP-library calls to instrumented

wrapper functions on the source-code level based

on the POMP OpenMP monitoring API [20]. This

is done to capture performance-relevant OpenMP

events, such as entering a parallel region. Since
OpenMP defines only the semantics of directives,

not their implementation, there is no equally por-

table way of capturing those events on a different

level. OPARI supports all languages for which

OpenMP is defined.

Instrumentation of user functions is done either

during compilation using a compiler-supplied

profiling interface or on the source-code level using
TAU [21]. TAU is able to automatically instru-

ment the source code of C, C++, and Fortran
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programs using a preprocessor based on the

PDT [22] toolkit.
Instrumentation for MPI events is accom-

plished with a wrapper library based on the PMPI

profiling interface [5], which generates MPI-spe-

cific events by intercepting calls to MPI functions.

All MPI, OpenMP, and user-function instrumen-

tations call the EPILOG run-time library, which

provides mechanisms for buffering and trace-file

creation. At the end of the instrumentation process
the user has a fully instrumented executable.

Running this executable generates a trace file in

the EPILOG format. After program termination,
the trace file is fed into the EXPERT analyzer. The

analyzer uses EARL [23] to provide a high-level
view of the raw trace file. We call this view the

enhanced event model, and it is where the actual

analysis takes place. The analyzer generates an

analysis report, which serves as input for the EX-

PERT presenter.

Using the presenter the user can conveniently

navigate through the entire search space along the

dimensions bottleneck type, call path, and loca-
tion. In addition, the automatic analysis can be

combined with a manual analysis using VAMPIR

[15], which allows the user to investigate the
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patterns identified by EXPERT in a time-line dis-

play. To do this, the user only needs to convert the

EPILOG trace file into the VTF3 format. Cur-

rently, the EXPERT tool environment supports

the following platforms:

• Cray T3E

• Hitachi SR-8000

• IBM Power3 and Power4 cluster

• Linux IA-32 cluster

• SGI MIPS cluster

Compiler-controlled instrumentation can be

done either on Linux PC clusters using the un-
published profiling interface of the PGI [24] com-

piler or on Hitachi using the proprietary compiler

[25], respectively. However, currently neither TAU

nor the PGI and Hitachi compilers support effi-

cient call-site instrumentation, and hence the tra-

ces currently carry no call-site information. For

this reason, a call path computed by EXPERT

may actually represent a set of call paths differing
only in call sites (e.g., line number of a function

call).
4. Abstraction mechanisms

A raw EPILOG event trace, as generated by the

instrumentation, contains a chronologically sorted
sequence of ‘‘primitive’’ events. There are different

types of events and, depending on the event type,

each event may have different attributes. However,

all event types provide at least a time and location

attribute characterizing the control flow causing it.

This representation of program execution is called

the basic event model.

The event types are organized in a hierarchy.
There are programming-model-independent event

types representing simple region enters and exits.

Types indicating point-to-point and collective

communication cover the MPI model. OpenMP

event types comprise fork and join operations,

lock synchronization operations, and––similar to

MPI––an event type indicating the collective exe-

cution of parallel constructs.
EARL maps a raw event trace, which is repre-

sented on the level of the basic event model, onto
an enhanced event model. The enhanced event

model provides abstractions that allow compound

events representing inefficient behavior to be easily

described (see [9,26] for details). Whereas the basic

event model provides only sequential access to the

events, the enhanced event model allows events to
be accessed randomly using the event position as a

reference (i.e., the first event has position one,

etc.). Additionally, the enhanced event model

provides two types of abstractions on top of the

basic part of the model:

• State sequences

• Pointer attributes

State sequencesmap individual events onto a set

of events that represent one aspect of the parallel

system�s execution state at the moment when the

event happens. This allows compound events to be

described in the context of the execution state. An

example is the message queue containing all events

of sending messages currently being transferred.
Thus, EARL is able to return for a given event the

set of all send events of messages that have been

sent before or by the given event itself and that

have not yet been received at the time of the given

event. This set of events is returned as a set of

positions, which can then be used to access each

event in the set individually. Since each event in

the trace is associated with one such set (i.e., one
state of the message queue), these sets form

themselves a sequence that describes the evolution

of one aspect of the system�s execution state over

time. Other state sequences describe different as-

pects of the execution state, such as the region call

stack or the progress of collective operations.

Pointer attributes connect two corresponding

events with one another, so that one can define
compound events along a path of corresponding

events. Corresponding events are events referring

to the same larger unit of activity, such as a whole

message exchange. Pointer attributes are added to

the attributes defined in the basic model and carry

as their value the position of the corresponding

event. An example is an attribute pointing from a

message-receive event to the corresponding send
event. After accessing the receive event, it is easy to

access the corresponding send event because its
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position is provided as an attribute value of the

receive event. Other pointer attributes describe

different types of correspondence, such as acquir-

ing and releasing a lock object or entering and

leaving a region.

An essential part of the enhanced model is the
dynamic call tree, which is computed from all enter

and exit events. As an additional pointer attribute,

EARL provides a link from each enter event to the

first enter event visiting the same node in the call

tree (i.e., call path). This provides a simple means

of associating a performance-relevant compound

event with the corresponding execution phase of

the parallel program.
5. Analysis component

The design of the analyzer is based on the

specifications and terminology presented in [27].

The analyzer attempts to prove performance

properties for one execution of a parallel applica-
tion and to quantify them according to their in-

fluence on the performance. A performance

property characterizes a class of performance be-

havior and is specified in terms of a compound

event, which the analyzer tries to detect in an event

trace. A compound event is a set of events

matching a specific execution pattern, whose con-

stituents are connected by relationships and con-
straints. For each property, EXPERT calculates a

severity measure indicating the fraction of execu-

tion time spent on that property and, thus, allows

the correlation of different properties in a single

view.

The run-time events of a parallel application

occur on multiple time lines––one for each control

flow (i.e., thread). EXPERT regards all control
flows as being mapped to different CPUs at any

time, that is, processes or threads running on the

same SMP node do not share a CPU. EXPERT

describes the severity of a particular performance

property in terms of wall-clock interval sets that

may be distributed across different time lines. All

interval sets are subsets of the CPU-reservation

time, which is the time from the first to the last
event multiplied by the number of threads. The

severity is defined as the amount of such an in-
terval set and is later presented in percentage of the

CPU-reservation time.

The analyzer is implemented in Python using

EARL for trace access. Its architecture is based on

the idea of separating the analysis process from the

specification of the performance properties; that is,
the performance properties are not hard-coded

and specified separately.

5.1. Specification of performance properties

Many tools specify performance aspects to be

analyzed using a specification language. For ex-

ample, Paradyn describes performance metrics
using the MDL metric-description language [10],

while Aksum [13] uses Java to represent different

performance properties. Performance properties in

EXPERT are specified using a Python [28] class

interface to the abstractions discussed in Section 4,

which themselves are implemented in C++.

The performance properties in EXPERT are

specified in form of patterns. Patterns are Python
classes, which are responsible for detecting com-

pound events indicating inefficient behavior. They

provide a common interface making them ex-

changeable from the perspective of the tool. The

specifications use the abstractions provided by

EARL and, for this reason, are very simple.

The analysis process follows an event driven

approach. EXPERT walks sequentially through
the event trace and invokes for each single event

call-back methods of the pattern instances and

supplies the event as an argument. A pattern can

provide a different call-back method for each event

type. The call-back method itself then tries to lo-

cate a compound event representing an ineffi-

ciency, thereby following links (i.e., pointer

attributes) emanating from the supplied event or
investigating state sequences. This mechanism al-

lows the simple specification of very complex

performance-relevant situations and an explana-

tion of inefficiency that is based on the terminol-

ogy of the programming model. The common

interface also provides a method to launch a

configuration dialog for the input of pattern-spe-

cific parameters before the analysis process as well
as a method to launch a presentation dialog for the

display of pattern-specific results afterward, which
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allows the treatment of pattern-specific perfor-

mance criteria.

EXPERT organizes the performance properties

in a hierarchy. The upper levels of the hierarchy

(i.e., those that are closer to the root) correspond

to more general behavioral aspects such as time
spent in MPI functions. The deeper levels corre-

spond to more specific situations such as time lost

due to blocking communication. Fig. 2 shows the

hierarchy of predefined performance properties

that are supported by the current prototype of

EXPERT. The set should not be regarded as
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the hierarchy and which is indicated by gray boxes,

involves idle times that can only be determined by

comparing the chronological relation between in-

dividual events. This is where the compound-event

approach can demonstrate its full power. A major

advantage of EXPERT lies in its ability to handle
both groups of performance properties in one step.

The following briefly explains the performance

properties that are currently implemented in

EXPERT.

Total. Time spent on program execution in-

cluding the idle times of slave threads during

OpenMP sequential execution.

Execution. Time spent on program execution
but without the idle times of slave threads during

OpenMP sequential execution.

MPI . Time spent on MPI API calls.

Communication. Time spent on MPI API calls

used for communication.

Collective. Time spent on collective communi-

cation.

Early Reduce. Collective communication oper-
ations that send data from all processes to one

destination process (i.e., n-to-1) may suffer from

waiting times if the destination process enters the

operation earlier than its sending counterparts,

that is, before any data could have been sent. The

property refers to the time lost as a result of that

situation.

Late Broadcast. Collective communication op-
erations that send data from one source process to

all processes (i.e., 1-to-n) may suffer from waiting

times if destination processes enter the operation

earlier than the source process, that is, before any

data could have been sent. The property refers to

the time lost as a result of that situation.

Wait at N3N . Collective communication op-

erations that send data from all processes to all
processes (i.e., n-to-n) exhibit an inherent syn-

chronization among all participants, that is, no

process can finish the operation until the last

process has started. The time until all processes

have entered the operation is measured and used

to compute the severity.

Point to Point. Time spent on point-to-point

communication.
Late Receiver. A send operation is blocked until

the corresponding receive operation is called. This
can happen for several reasons. Either the MPI

implementation is working in synchronous mode

by default or the size of the message to be sent

exceeds the available MPI-internal buffer space

and the operation is blocked until the data is

transferred to the receiver.
Messages in Wrong Order (Late Receiver). A

Late Receiver situation may be the result of mes-

sages that are sent in the wrong order, that is, not

in the order the receiving processes are expecting

them. If a process sends messages to processes that

are not ready to receive them, the sender�s MPI-

internal buffer may overflow so that from then on

the process needs to send in synchronous mode
causing a Late Receiver situation.

Late Sender. This property refers to the time

wasted when a call to a blocking receive operation

(e.g., MPI_Recv or MPI_Wait) is posted before

the corresponding send operation has been started.

Messages in Wrong Order (Late Sender). A

Late Sender situation may be the result of mes-

sages that are received in the wrong order. If a
process expects messages from one or more pro-

cesses in a certain order while these processes are

sending them in a different order, the receiver may

need to wait longer for a message because this

message may be sent later while messages sent

earlier are ready to be received. Both Messages in

Wrong Order properties have been motivated

by [29].
IO (MPI). Time spent on MPI file IO.

Synchronization (MPI). Time spent on MPI

barrier synchronization.

Wait at Barrier (MPI). This property is simi-

lar to the property Wait at N � N . It covers the

time spent on waiting in front of an MPI barrier.

The time until all processes have entered the bar-

rier is measured and used to compute the severity.
OpenMP. Time spent on the OpenMP run-time

system.

Flush (OpenMP). Time spent on flush direc-

tives.

Fork (OpenMP). Time spent by the master

thread on team creation.

Synchronization (OpenMP). Time spent on

OpenMP barrier or lock synchronization. Lock
synchronization may be accomplished using either

API calls or critical sections.
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Barrier (OpenMP). The time spent on implicit

(compiler-generated) or explicit (user-specified)

OpenMP barrier synchronization. As already

mentioned, implicit barriers are treated similar to

explicit ones. The instrumentation procedure re-

places an implicit barrier with an explicit barrier
enclosed by the parallel construct. This is done by

adding a nowait clause and a barrier directive as

the last statement of the parallel construct. In cases

where the implicit barrier cannot be removed (i.e.,

parallel region), the explicit barrier is executed in

front of the implicit barrier, which will be negli-

gible because the team will already be synchro-

nized when reaching it. The synthetic explicit
barrier appears in the display as a special implicit

barrier construct.

Explicit (OpenMP). Time spent on explicit

OpenMP barriers.

Implicit (OpenMP). Time spent on implicit

OpenMP barriers.

Wait at Barrier (Explicit). This property cor-

responds to the property Wait at N � N . It covers
the time spent on waiting in front of an explicit

(user-specified) OpenMP barrier. The time until all

processes have entered the barrier is measured and

used to compute the severity.

Wait at Barrier (Implicit). Similar to the pre-

ceding property, this property covers the time

spent on waiting in front of an implicit (compiler-

generated) OpenMP barrier. The time until all
processes have entered the barrier is measured and

used to compute the severity.

Lock Competition (OpenMP). This property

refers to the time a thread spent on waiting for a

lock that had been previously acquired by another

thread.

API (OpenMP). Lock competition caused by

OpenMP API calls.
Critical (OpenMP). Lock competition caused

by critical sections.

Idle Threads. Idle times caused by sequential

execution before or after an OpenMP parallel re-

gion.

Note that all properties involving collectively

executed operations, such as MPI collective com-

munication or OpenMP barriers, require to iden-
tify all parts of individual collective-operation

instances in the event stream.
5.2. Representation of performance behavior

Each applied pattern instance computes a two-

dimensional severity matrix, which contains the

severity as a function of the node in the dynamic
call tree (i.e., call path) and the location (i.e.,

thread). Thus, the complete performance behavior

is represented using a three-dimensional matrix,

where each element contains the severity for a

specific performance property, call path, and lo-

cation.

The first dimension describes the kind of inef-

ficient behavior. The second dimension describes
both its source-code location and the execution

phase during which it occurs. Finally, the third

dimension gives information on the distribution of

performance losses across different processes or

threads, which allows to draw additional conclu-

sions (e.g., load imbalance, see also [9,30]).

In addition, each of the dimensions is arranged

in a hierarchy: the performance properties in a
hierarchy of general and more specific ones, the

call-tree nodes in their evident hierarchy, and the

locations in a hierarchy consisting of the levels

machine, node, process, and thread. Thus, it is

possible to analyze the behavior on different levels

of granularity.

5.3. Presentation of performance behavior

The user can interactively access each of the

hierarchies constituting a dimension of perfor-

mance behavior using a tree browser that labels

each node with a weight. EXPERT uses as weight

the severity associated with a performance prop-

erty (i.e., a percentage of the CPU-reservation

time). The weight that is actually displayed de-
pends on the state of the node, that is, whether it is

expanded or collapsed. The weight of a collapsed

node represents the whole subtree associated with

that node, whereas the weight of an expanded

node represents only the fraction that is not cov-

ered by its descendants because the weights of its

descendants are now displayed separately. This

allows the analysis of performance behavior on
different levels of granularity.

For example, the call tree may have a node main

with two children foo and bar (Fig. 3). In the
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collapsed state, this node is labeled with the weight

representing the time spent in the whole program.

In the expanded state it displays only the fraction

that is spent neither in foo nor in bar.

The weight is displayed simultaneously using

both a numerical value as well as a colored icon.
The color is taken from a spectrum representing

the whole range of possible weights (i.e., 0–100%).

To avoid distraction, insignificant values below

0.5% are displayed in gray. Colors enable the easy

identification of nodes of interest even in a large

tree, whereas the numerical values enable the

precise comparison of individual weights.

The trees of the different analysis dimensions
are interconnected so that the user can investigate

the distribution of a selected performance property
Fig. 4. Display of performance behavior in EXPE
across the call tree, and the distribution of a se-

lected performance property present in a selected

call-tree node across the locations. In Fig. 4, the

selections are indicated by framed node labels.

Thus, the user can investigate the performance

behavior in a scalable but still accurate way along
all its interconnected dimensions using only a

single integrated view.

In the absolute view mode (i.e., default), the

display represents the severity as a percentage of

the total CPU-reservation time. However, always

referring to the total CPU-reservation time may

limit scalability because values may become very

small (e.g., in the case of many locations). For this
reason, the presenter offers a relative view mode. In

this relative view mode, a percentage shown in a

tree always refers to the selection in the left

neighbor tree.

Weighted trees provide a uniform and very in-

tuitive display for each of the analyzed dimen-

sions. Once the user is familiar with this kind of

display, it is possible to navigate across the per-
formance space in a scalable but still accurate way
RT for REMO in the absolute view mode.
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along all its interconnected dimensions. First, the

presenter allows exploration of the full perfor-

mance space by showing the results of a multidi-

mensional analysis in a multidimensional fashion

using three interconnected tree browsers. Second,

instead of confusing the user with differently styled
views for different metrics, all performance prop-

erties are uniformly accommodated in the same

display and thus provide the ability to easily

compare the effects of different kinds of perfor-

mance behavior. In addition, since the user only

needs to get accustomed to one way of presenta-

tion, the necessary learning efforts are small.

Third, the ability to investigate the performance
behavior of individual nodes in the call tree (i.e.,

call paths) either including or excluding their de-

scendants allows the analysis of complex source-

code hierarchies along the functional dependences

of their elements.

5.4. Extension mechanism

EXPERT provides a large set of built-in per-

formance properties, which cover the most fre-

quent inefficiency situations. But sometimes the

user may wish to consider application-specific

metrics such as iterations or updates per second. In

this case, the user can simply write another pattern

class that implements an own application-specific

performance property according to the common
interface of all pattern classes, and place it into a

plug-in module. At startup time, EXPERT dy-

namically queries the module�s name space and

looks for newly inserted patterns from which it is

now able to build instances. The new patterns are

integrated into the graphical user interface and can

be used like the predefined ones.
6. Limitations

Despite its strengths, the approach taken here

exhibits some limitations that result both from

general limitations of event tracing on the one

hand and from particular properties of the trace-

analysis method proposed here on the other hand.
First, the event-trace size, which may easily

reach several millions of events or several hun-
dreds of megabytes when dumped to a file, con-

stitutes a severe obstacle to a ubiquitous

application of all trace-based performance-analy-

sis techniques. The difficulties of handling large

traces result from their local buffer-memory re-

quirements during generation, which may, in ad-
dition to competing for the target application�s
memory, cause significant perturbation when the

buffer contents are written to a file as a result of

buffer overflow. Also, global trace-file sizes may

limit scalability in the case of massively parallel

systems with thousands of processors.

Second, as a consequence of the enormous

trace-file sizes, the analysis process performed by
EXPERT may take several hours to complete.

Although a processing time of several hours might

be acceptable if it results in substantial perfor-

mance improvements, to convince the user com-

munity a production tool should offer more

convenience also with respect to speed. However,

the current Python implementation still offers op-

portunities for optimization.
Third, the way EXPERT computes inclusive

and exclusive times associated with a performance

property imposes certain constraints on the way

performance properties can be arranged in the

property hierarchy. To ensure the correctness of

computing the inclusive and exclusive severity, the

measured severity intervals of siblings in the

property hierarchy must be non-overlapping either
in time or in location, which may limit the freedom

of extending that hierarchy at least to some extent.

We are currently working on several extensions

and enhancements to overcome––or at least limit

the impact of––these limitations.
7. Examples

The EXPERT performance-analysis environ-

ment has been tested for several real-world appli-

cations. This section demonstrates that the

performance problems addressed by the present

approach are of practical relevance and that they

can be conveniently localized using the EXPERT

presentation component. The test cases comprise
two hybrid applications, REMO and SWEEP3D,

and two MPI applications, CX3D and TRACE.
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The latter two also demonstrate how the auto-

matic analysis done by EXPERT can be combined

with VAMPIR�s time-line displays to more deeply

understand the problems at hand. We consider one

event trace per application.

All the experiments were conducted on ZAM-
pano [31], a parallel computer with eight SMP

nodes, each having four Intel Pentium III Xeon

(550 MHz) CPUs. CPU reservation was done such

that one CPU per thread or single-threaded pro-

cess was available to each application. Instru-

mentation of user code was performed using the

PGI compiler.

Table 1 summarizes trace-file size and overhead.
The head row contains the program name, the first

row below shows the number of CPUs used, the

second row lists the trace-file size, and the third

row gives the execution time. To estimate the run-

time overhead introduced by the instrumentation,

the minimum execution time of a series of 10 un-

instrumented runs was compared to the minimum

execution time of a series of 10 instrumented runs.
The result is listed in the fourth row. Finally, the

last row shows the duration of the analysis process

carried out on the test platform.

The large trace-files sizes obtained for only

short execution times expose a limitation of the

current approach. Restricting the tracing to se-

lected parts of the program and its execution might

help to reduce temporal event density while pre-
serving relevant information. The inconveniently

long analysis run times are not only a result of

large trace-file sizes, but also a consequence of the

prototype�s early design stage. One opportunity

for optimization is, for example, an improved in-

formation exchange among different performance
Table 1

Trace-file size and overhead

REMO SWEEP3D CX3D TRACE

CPUs 16 16 8 16

Size (MB) 170 72 34 310

Execution

time (s)

37.2 16.5 139.8 58.9

Overhead (%) 9.7 6.0 0.1 4.2

Analysis time

(h:min)

9:48 3:22 1:25 12:57
properties during analysis. In addition, the re-im-

plementation in a compiled programming lan-

guage instead of an interpreted scripting language,

such as Python, might also contribute to better

speed results. The overhead numbers presented in

the table are satisfactory, only the instrumentation
overhead of REMO reaches nearly 10%. However,

since the performance problem identified in

REMO is large in relation to the overall execution

time, the numbers presented here concerning this

problem are still useful (Section 7.1).

7.1. REMO

REMO [32] is a weather forecast application of

the DKRZ (Deutsches Klima Rechenzentrum). It

implements a hydrostatic limited area model,

which is based on the Deutschland/Europa weather

forecast model of the German Meteorological

Services (Deutscher Wetterdienst (DWD)). We

consider an early experimental MPI/OpenMP

version of the production code. The application
was executed on four nodes with one process per

node and four threads per process (4 processes · 4
threads).

Fig. 4 shows the result display of REMO in the

absolute mode, that is, all values and colors rep-

resent percentages of the total CPU-reservation

time. The property view indicates that one half

(i.e., 51.6%) of the total CPU-reservation time is
idle time (i.e., Idle Threads) resulting from

OpenMP sequential execution outside of parallel

regions. Although during this period the idle

threads actually do not execute any code, the time

is mapped onto the call paths that have been ex-

ecuted by the master thread during this time. That

is to say, for analysis and presentation purposes

EXPERT assumes that outside parallel regions the
slave threads ‘‘execute’’ the same code as their

master thread. This method of call-path mapping

helps to identify parts of the call tree that might be

optimized in order to reduce the amount of se-

quential execution.

In the case of REMO, the EXPERT display

(Fig. 4, middle) allows the easy identification of

two call paths as major sources of idle times. The
location view (Fig. 4, right) shows the distribution

of the idle time across the slave threads.
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7.2. SWEEP3D

The benchmark code SWEEP3D [33] represents

the core of a real ASCI application. It solves a

1-group time-independent discrete ordinates (Sn)
3D Cartesian (XYZ) geometry neutron transport

problem. We consider an early experimental MPI/

OpenMP version of the original MPI version.

While MPI is responsible for parallelism by do-

main decomposition, OpenMP is responsible for

parallelism by multitasking.

The application was executed on four nodes

with one process per node and four threads per
process (4 processes · 4 threads). The performance

behavior of SWEEP3D demonstrates a potential

hazard of hybrid programming, that is, a perfor-

mance problem resulting from the combination of

MPI and OpenMP. MPI calls made outside a

parallel region prolong sequential execution and

prevent available CPUs from being used by mul-

tiple threads.
The results are shown in Table 2. While the top

section of the table lists two call paths, the bottom

section contains the numerical results obtained for

the whole program and these two call paths. The

values in the bottom section represent percentages

of the total CPU-reservation time. The first col-

umn refers to the whole program, whereas the

second and third columns refer to the call paths
listed above in the table. The call path (a) shown in

the table is responsible for most of the losses oc-

curring due to the property Idle Threads. However,

at the same time this call path exhibits a significant

loss due to the property Late Sender. Note that

Late Sender counts the times of the master threads,
Table 2

Performance problems found in SWEEP3D in percentage of the tota

Call paths

(a) seep3dfiinner_autofiinnerfisweepfirecv_realfi
(b) driverfiinner_autofiinnerfisweepfi!$omp paral

Performance property Whole program

Idle Threads 37.5

Communication 6.5

Late Sender 3.2

Messages in Wrong Order 0.9

Implicit Barrier (OpenMP) 4.3

Wait at Barrier (OpenMP, implicit) 2.8
whereas Idle Threads counts the times of the slave

threads (three slaves per master). Taking this into

account, reducing Late Sender by 1% would speed

up the application by 4% because speeding up the

master also reduces idle times of the slaves. Ob-

viously, one reason for the Late Sender problem at
call path (a) is receiving messages in the reverse

sending order (Messages in Wrong Order). More-

over, a significant amount of time is spent on the

implicit (i.e., compiler-generated) OpenMP barrier

at the end of call path (b). Expanding the node of

the property Implicit Barrier (Fig. 5, left) reveals

that most of that time is lost due to the property

Wait at Barrier.

7.3. CX3D

CX3D is an MPI application used to simulate

Czochralski crystal growth [34], a method applied

in the silicon-wafer production. The simulation

covers the convection processes occurring in a

rotating cylindrical crucible filled with liquid melt.
The convection, which strongly influences the

chemical and physical properties of the growing

crystal, is described by a system of partial differ-

ential equations. The crucible is modeled as a

three-dimensional cubic mesh with its round shape

expressed by cyclic border conditions. The mesh is

distributed across the available processes using a

two-dimensional spatial decomposition. The ap-
plication was executed on two SMP nodes with

four processes per node. MPI communication

within SMP nodes was done via shared memory.

Most of the execution time is spent in a routine

called VELO, which is responsible for calculating
l CPU-reservation time

MPI_Recv

lelfi!$omp dofi!$omp ibarrier

(a) (b)

17.5

5.8

3.2

0.9

3.3

2.6



Fig. 5. Display of performance behavior in EXPERT for SWEEP3D in the relative view mode.
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the new velocity vectors. Communication is re-

quired when the computation involves mesh cells

from the border of each processor�s subdomain.

The execution configuration of CX3D is deter-
mined by the number of processes that are as-

signed to each of the two decomposed dimensions.

The experiment presented here was conducted with

a decomposition configuration of 8 · 1 processes.

The results in Table 3 show that a significant

amount of the communication time was intro-

duced by Late Sender and Wait at N � N . Using

the call-tree view (Fig. 6, middle), it is easy to
identify two call paths mainly responsible for these

performance properties. Both call paths are exe-

cuted as parts of VELO. They are listed in the top

section of the table. Using the location view (Fig.

6, right), one can easily investigate the distribution

of the property Late Sender across the processes. It
Table 3

Performance problems found in CX3D in percentage of the

total CPU-reservation time

Call paths

(a) veloficrecvxsfiMPI_Recv

(b) velofiMPI_Allreduce

Performance property Whole program (a) (b)

Communication 18.4 7.1 6.9

Late Sender 5.8 4.6

Wait at N � N 7.5 6.6
is obvious that most of the time associated with

this property is caused by process 0 and 7.

A VAMPIR time-line diagram of CX3D when

executing VELO is shown in Fig. 7. The middle of
the time line exhibits a noticeable Late Sender in-

stance. Process 7 tries to receive a message from

process 6 using MPI_Recv, but the message is sent

long after process 7 has entered the receive oper-

ation. Some other but smaller instances follow

shortly after this one. Finally, on the right part of

the time line one can recognize a Wait at N � N
instance across all processes. Note that the work-
load distribution across all processes for the sec-

tion of the time line shown here seems to be the

reason that the MPI operations are entered earlier

by process 7 and, thus, the reason for the ineffi-

cient behavior. The workload distribution within a

function can be easily obtained in EXPERT by

selecting the property Execution in expanded state,

which then reflects the execution time without
communication.

7.4. TRACE

TRACE [35] simulates the subsurface water

flow in variably saturated porous media. The

parallelization is based on spatial decomposition

and a parallelized CG algorithm. The application
was executed using four SMP nodes with four

processes per node (4 processes · 4 processes). MPI



Fig. 6. Display of performance behavior in EXPERT for CX3D in the absolute view mode.

Fig. 7. VAMPIR time-line diagram of CX3D.
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communication within SMP nodes was done via
shared memory.

Using the performance-property view (Fig. 8,

left), it is easy to see that most of the time used

for communication routines was spent on waiting

due to the situations Late Sender and Wait at

N � N . Using the call-tree view (Fig. 8, middle),

one can quickly locate two call paths that are

major sources of the previously identified per-
formance problems. The call path mainly re-

sponsible for the property Wait at N � N is

shown in the vertical middle of the call tree. The

presenter display was switched to the relative

view mode, that is, whereas the values and colors
on the left are percentages of the total CPU-res-
ervation time, the percentages in the middle are

fractions of the selection (node with framed label)

on the left, and the percentages on the right are

fractions of the selection in the middle. For ex-

ample, the 9.8% shown for the selected call path

in the middle is 9.8% of 2.4% of the total CPU-

reservation time.

The results of the analysis are listed in Table 4.
The first row of the bottom section corresponds to

the time spent in MPI communication statements.

For the two call paths this is just the time needed

for completion of the specific MPI calls at their

end. The second and third row correspond to the



Fig. 8. Display of performance behavior in EXPERT for TRACE in the relative view mode.

Table 4

Performance problems found in TRACE in percentage of the total CPU-reservation time

Call paths

(a) traceficgiterationfiparallelcgfiparallelfemultiplyfiexchangedatafiexchangebufferswffi
mrecvfiMPI_ Recv

(b) traceficgiterationfiparallelcgfiparalleldotproductfiglobalsum_r1fiMPI_Allreduce

Performance property Whole program (a) (b)

Communication 14.3 7.8 3.0

Late Sender 7.3 5.8

Wait at N � N 2.4 2.2

Fig. 9. VAMPIR time-line diagram of TRACE.
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waiting times caused by the Wait at N � N and

Late Sender situations.

The location view (Fig. 8, right) shows the dis-

tribution of idle times introduced byWait at N � N
during execution of the call path selected in the

middle tree of Fig. 8, which is another call path
responsible for that property. Obviously, the idle

times expose an uneven but still symmetric distri-

bution across the different processes. The ‘‘inner’’

processes of each SMP node exhibit significantly

less waiting time than the ‘‘outer’’ ones. Fig. 9

shows a VAMPIR [15] time-line diagram of

TRACEwhen executing this call path. The time line

presents a noticeable Wait at N � N instance. The
distribution of the waiting times in MPI_Allreduce

shown in the time line bears a clear resemblance to

the distribution shown in the EXPERT result dis-

play (Fig. 8, right) in that every second pair of

processes suffers from significant waiting times.
8. Conclusion

The EXPERT tool environment provides a

complete but still extensible solution for automatic

performance analysis of MPI, OpenMP, or hybrid

applications running on parallel computers with

SMP nodes. EXPERT represents performance

properties on a very high level of abstraction that

goes beyond simple metrics and provides the
ability to explain performance problems in terms

of the underlying programming model(s). The set

of performance-property specifications is embed-

ded in a flexible architecture and can be extended

to meet application-specific needs.

The performance behavior is presented along

three interconnected dimensions: class of perfor-

mance behavior, position within the call tree and
thread of execution. The last dimensions allows

even the effects of different communication pat-

terns among subdomains to be investigated. Each

dimension is arranged in a hierarchy so that the

user can view the behavior on varying levels of

detail. In particular, the hierarchical structure of

hybrid applications and SMP-cluster hardware is

reflected this way. Each point of the representation
is uniformly mapped onto the corresponding frac-

tion of CPU-reservation time, allowing the conve-
nient correlation of different behavior in a single

integrated view. The user can access all three di-

mensions interactively using a scalable but still

accurate tree display. Colors make it easy to iden-

tify interesting nodes even in case of large trees.

EXPERT is well suited to analyze a single trace
file. But the development process of parallel ap-

plications often demands for comparison of trace

files representing different execution configurations

or development versions. In the future, we intend to

integrate mechanisms for comparative perfor-

mance analysis. In addition, we plan to improve

our result presentation by integrating it more clo-

sely with an event-trace browser such as VAMPIR
[15] to automatically visualize instances of com-

pound events using time-line diagrams and by

adding source-code displays to display their source-

code location. Finally, we will work on further

improving and completing our performance-prop-

erty catalog including the integration of hardware-

counter based performance properties.
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