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Abstract. In parallel applications, a significant amount of communica-
tion occurs in a collective fashion to perform, for example, broadcasts,
reductions, or complete exchanges. Although the MPI standard defines
many convenience functions for this purpose, which not only improve
code readability and maintenance but are usually also highly efficient,
many application programmers still create their own, manual implemen-
tations using point-to-point communication. We show how instances of
such hand-crafted collectives can be automatically detected. Matching
pre- and post-conditions of hashed message exchanges recorded in event
traces, our method is independent of the specific communication pat-
tern employed. We demonstrate that replacing detected broadcasts in
the HPL benchmark can yield significant performance improvements.
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1 Introduction

The most scalable parallel application codes today use message passing as their
primary parallel programing model, which offers explicit communication primi-
tives for the exchange of messages. While pair-wise communication is most com-
mon, the majority of applications require communication among larger groups
of processes [5]. The latter is needed, for example, to distribute data, gather re-
sults, make collective decisions, or broadcast their outcomes. Although all those
communication objectives can be mapped onto point-to-point messages between
two processes, their efficient realization is often challenging.

For this reason, the Message Passing Interface (MPI) [10], the de-facto stan-
dard for message passing, defines 17 so-called collective operations to support
the most common group exchange patterns. For example, sending data from one
process to all other processes is encapsulated in the functionality of MPI Bcast().
Although equivalent semantics could be achieved by sending the same piece of
data iteratively to all processes, one at a time, using MPI Bcast() is simpler, the
resulting code looks cleaner and is easier to maintain. In addition, sophisticated
implementations of MPI Bcast() are likely to be much more efficient.

In general, MPI collectives offer advantages in terms of simplicity, expressive-
ness, programmability, performance, and predictability [5]. In particular, they
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allow users to profit from both efficient algorithms [2,13,14] and platform-specific
optimizations [8,9,7]. Such improvements have often been reported to make col-
lective implementations several times faster. Some of them exploit hardware
features such as multicast or utilize special networks for collectives not even
accessible via MPI point-to-point communication. These advantages cannot be
overemphasized as the efficient implementation of collective operations is a com-
plex task, which requires detailed knowledge not only of parallel algorithms and
programming but also of the specific physical properties of the target platform.

However, in spite of such benefits, not all applications today make consequent
use of predefined collectives and still deploy hand-crafted ensembles of point-to-
point messages instead. One way of encouraging their adoption, is to recognize
manually-implemented collectives in existing codes and to suggest their replace-
ment. Existing recognition methods available for this purpose rely on the specifics
of the underlying message exchange pattern [11,3]. But given the multitude of
ways collectives can be implemented, any such attempt is too restrictive.

In this paper, we show how to overcome these disadvantages using a novel
approach based on a semantic detection. We propose a method for identifying
patterns of point-to-point messages in compact communication traces of MPI
applications that are semantically equivalent to predefined collective operations.
Relying exclusively on pre- and postconditions derived from the specification of
the collective operation, we do not make any assumptions regarding the specific
characteristics of the pattern. Our method detects broadcasts and operations
composed of broadcasts fully automatically. It detects more sophisticated col-
lective operations with a certain degree of prior user instrumentation. Applying
our method to the HPL benchmark [1] pinpoints all contained collective commu-
nication operations. Replacing those manual collectives with the corresponding
MPI collectives improves the HPL performance by up to 44%.

The remainder of the paper is organized as follows: In Section 2 we formalize
the semantics of collective operations and show how pre- and postconditions can
be derived that can be verified based on trace data. Proving such conditions
requires analyzing both the contents of messages and the paths along which
they travel. How we store all the necessary information in trace files is explained
in Section 3. There, we place special emphasis on the hash functions we apply
to avoid excessive memory requirements and their structure-preserving prop-
erties. The actual identification of manual collectives is outlined in Section 4.
A major part of it is devoted to the parallel message replay we need to track
communication pathways and the additional challenges posed by more complex
collective operations such as scatter or reduce. Experimental results demonstrat-
ing the benefits of our method are presented in Section 5. Finally, we compare
our approach to related work in Section 6, before we conclude the paper with
an outlook on future work in Section 7.
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Fig. 1: Timeline diagram of two broadcast implementations

2 Semantics of Collective Operations

The MPI standard specifies only the semantics of collective operations, but does
not dictate how they must be implemented. Therefore, any method capable
of detecting a wide variety of manual collectives can not rely on any specific
implementation. We will start our discussion with the simplest collective, the
broadcast, and later move on to more challenging collectives such as scatter and
reduce. For broadcast, the standard provides the following definition:

MPI BCAST broadcasts a message from the process with rank root to all
processes of the group [. . . ].

This definition does, however, not imply that a correct implementation needs to
send a message from the root to all other processes directly. On the contrary,
efficient implementations typically involve other processes to forward messages.
By reversing this semantic definition, it is possible to infer pre- and postcon-
ditions that can tell whether or not a broadcast occurred. If at some point in
time only one process owns a certain message and at a later time all processes
within a group own the same message, then there must have been a collective
communication that is semantically equivalent to a broadcast.

Figure 1 illustrates the behavior of two different broadcasts in the form of
a timeline diagram. The diagram shows a timeline for every process and arrows
between them to depict point-to-point communication. In addition, the letters A
and B represent message contents. At the beginning, processes 1 and 3 own con-
tents A and B, respectively. All processes receive further contents via messages
as the time progresses. The communications with message A are semantically
equivalent to a broadcast carried out using a simple centralized algorithm. The
communications with message B are also semantically equivalent to a broadcast
but in a hierarchical fashion. Identifying those different communication patterns
as the same collective operation needs some deterministic rules. A precondition
that needs to be true before the broadcast happens is that one of the processes,
which is called the root, owns some data X. During the broadcast, X travels
to the other processes in the group to which the broadcast applies. In other
words, exactly one process in the group must not receive X before sending it.
Although more receives are valid, a postcondition that needs to be fulfilled after
the broadcast happened is that all processes in the group except the root must
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Fig. 2: Communication graphs for the two broadcast variants

have received X. Only then it is guaranteed that, at the end of the analyzed
period of time, all processes share X. This fulfills the semantics of a broadcast.

Figure 2 maps the two broadcast variants from Figure 1 onto simpler commu-
nication graphs, ignoring temporal relationships. If any of the two communica-
tion graphs was not connected, then it would describe independent communica-
tions, which is in contradiction to the collective character of the operation. This
implicit connectivity requirement among the processes of the group is checked
during the analysis to prove the presence of a collective operation (see Section 4).

Defining pre- and postconditions for scatter and gather is more intricate, as
messages can be split or concatenated. In the case of scatter, a message at the
root is split into pieces to be distributed to all processes. Again, the precondition
requires the original message to be located at the root and the postcondition re-
quires non-overlapping parts of the message to be located at specific ranks. We
use hashes with homomorphic properties to handle message splitting and con-
catenation. Even more challenging are collectives computation operations (a.k.a.
reductions), where the messages are combined using, for example, arithmetic or
logical operations. Nevertheless, even this can be formalized. While all such con-
ditions can theoretically be verified under the assumption of unlimited access
to the memory and message buffers used by the application, difficulties arise in
practice when knowledge is restricted to manageable amounts of trace data. Two
specific challenges need to be addressed:

1. For reasons of space efficiency, we only store message hashes in our trace
files. Section 3 explains how we can still track many of the above-mentioned
transformational relationships even with hashes.

2. In manual collectives, data destined to remain at the root may never appear
in a message buffer and is thus not recorded in the traces. In Section 4, we
suggest a method to make those visible again.

A further advantage of our technique, which does not require any knowledge
of a collective operations’ implementation, is that it can also be used to search
for collective exchanges that do not have an existing primitive yet. This could
motivate the standardization of new collective operations such as neighborhood
or sparse collectives (under consideration for MPI-3.0). In this sense, it is not
only an instrument for application optimizers but also for MPI developers.
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Fig. 3: Workflow of detecting manual collectives within parallel applications.
Stacked boxes denote parallel programs. The user is in charge of the last step.

Figure 3 illustrates the workflow of detecting manual collectives. First, the
target application is prepared for tracing by linking it to a library of PMPI inter-
position wrappers. Not to duplicate development efforts, we leverage the tracing
infrastructure of the Scalasca toolset [4]. Only if more sophisticated collectives
should be detected, the application needs further preparation as described in
Section 4. The prepared application is then executed to generate a trace of
happened communication events. As a next step, these traces are searched for
manual collectives, which is done with the help of communication replays. This
search is carried out by our analyzer, which is a parallel program in its own right.
The analysis creates a list of matches, which the user then can decide to replace
with predefined collectives. Since the matches characterize only a single run, the
user not only needs to validate whether performance objectives are met but also
has to ensure that a replacement does not violate the program’s correctness.

In addition to the default information Scalasca stores with communication
events, we record a hash of the message payload, the starting address of the
message buffer, and the MPI data type. The first item is needed to track the
path along which a particular message is forwarded, and the last two to support
concatenation and split of messages, as explained in Section 4. Hashing mes-
sage payloads avoids storing full messages, which would consume a prohibitive
amount of storage space. A hash provides a fixed-length value regardless of the
message size. If two messages have the same hash value, they are identical with
high probability. If their hashes are different, the messages are different for sure.
Although testing for equality is a fundamental application of hashes and suffi-
cient to detect for example broadcasts, it is not enough to identify collectives
such as scatter, gather, or reduce, which split, concatenate, or combine messages.
For those, we exploit homomorphic properties of certain hash functions h that
ensure the following conditions for operations ⊕ on messages m1 and m2:

h(m1 ⊕m2) = h(m1)⊕ h(m2)

As a default, we use the established CRC-32 checksum from zlib because it is fast,
needs only 32 bits per message, gives acceptably-low collision probability, and
even supports split and concatenation. We also identified further hash functions
to support arithmetic or logical reductions of certain data types. Many hash
algorithms, however, entail difficult compromises. For example, cryptographic
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Fig. 4: Identifying a hierarchical broadcast via backward replay

hashes have a lower collision probability but are much slower, need more mem-
ory and can neither be concatenated nor combined. In general, the choice of hash
function is configurable, a feature which can be used to expand the coverage of
our method. Unfortunately, MPI reduction operations can be arbitrarily com-
plex as they support both user-defined data types and user-defined reduction
operations. Correctly identifying reductions via hashes is already challenging for
predefined data types such as floating point values, which is why we also store
an 8-byte message prefix in addition to the hash. This enables testing against
a predefined set of potential reduction operations. To support arbitrary user-
defined data types, we utilize the MPITypes library by Rob Ross [12], which
allows hashes to be calculated for arbitrary MPI messages.

4 Search for Manual Collectives

Our collectives detector searches for manual collectives in communication traces
enriched with message hashes such as illustrated using a hierarchical broadcast
example in Figure 4a. The actual search is performed via a backward replay
of the traces. During this replay, we traverse the traces from end to beginning
and reenact the recorded point-to-point communication in backward direction,
that is, the roles of sender and receiver are reversed. To simplify the replay,
our analyzer runs with the same number of processes as were used to trace
the target application, giving a one-to-one mapping between application and
analysis processes. The objective of the replay is to determine all processes that a
particular message has visited on its way to the final destination and to propagate
this information back to its origin. At the end, each process checks whether it
acted as root (i.e., did not receive the message from anyone else) and whether
the message has reached all other processes—directly or indirectly.

For this purpose, each process maintains a set of receivers for each message
hash that will later contain the ranks of all processes that have received a message
with this particular hash. Figure 4b shows these sets for the hash involved in a
broadcast. At the beginning, all sets are empty. Whenever a process encounters
a receive event during the backward replay for this hash, it adds its rank to
the set and sends its own set along with the backward message. The receiver



of a replay message then constructs the union of its own set with the set just
received. If at the end of the replay one process has a set containing all other
processes but not itself, a broadcast has happened with this process acting as the
root. Sending the hash along with the message is one way of separating the traffic
related to different broadcasts. In the example, processes 1 and 2 add themselves
to the set once they hit their local receive events. After replaying the first two
messages, the set of process 4 therefore includes {2, 1}. Before replaying the third
message, process 4 adds itself to the set and sends it to process 3. The set of
process 3 finally includes {4, 2, 1}, satisfying the condition for a broadcast with
3 as the root. Using this method, we can detect any broadcast irrespective of its
particular implementation. The backward replay ensures that we can track every
conceivable message pattern. In general, the direction of the replay depends on
the nature of the collective operation. If information is spread as in the case of
broadcast, we replay in backward direction. If information is concentrated as in
the case of gather, we replay in forward direction. The goal is always to end up
at the root. The all-to-all collective does not have a root, but can be detected
by decomposing it into either its 1-to-all or all-to-1 components.

There are two major challenges arising in the context of operations such as
gather, scatter, and reduce that transform messages through concatenation, split,
or combine operations. To check whether a message has been created as a result
of such a transformation, we need to send message hashes along with our replay
messages. The checks are then performed as we go, exploiting homomorphic
properties of the hash function as far as this is possible. Unfortunately, not all
operands of such a transformation are necessarily stored in the trace because
they might involve buffers that never appear in any communication.

Figure 5 illustrates the problem for scatter. For example, we cannot tell
whether the process shown in Figure 5a is the root of a scatter operation that
intends to disseminate the vector A,B,C,D,E because C is only stored locally
and as such never part of a communication that causes its message hash to be
recorded in the trace. To make such information available to our analyzer, we
introduced a new function that a user can insert into the program:

void Send_To_Self(void *buf, int count, MPI_Datatype datatype);

A call to this function records the missing information, about a buffer that a
process utilizes locally, in the trace. Calling this function for C before doing
both sends, makes C available in the trace. With this information, the analyzer
can infer that A,B,C,D, and E belonged together before they were scattered
across the processes. Without this information, however, no positive match can
be made. A similar situation is shown in Figure 5b. Here, an inner node of a
scatter tree receives a message, stores a part of it locally and forwards the rest
to other processes. A message containing A, B and C is received but only A and
B are sent further. Only with the hash of C written to the trace, the relationship
becomes visible. Nevertheless, finding all related message parts requires testing
of every combination of hashes. As this would be impractical for large numbers of
messages, our detector checks only adjacent messages for split and concatenation.
This is accomplished by looking at their starting addresses and MPI data types.
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Fig. 5: Inputs and outputs of processes during scatter operations

Currently, our prototype supports the fully automatic detection of broadcast
and alltoall variants composed of multiple point-to-point broadcasts. Barriers
are currently recognized as alltoall with an empty payload. Moreover, our pro-
totype is capable of semi-automatically recognizing scatter, gather, and reduce
with the help of the extra information described above. Reduce is restricted
to some arithmetic and logical operations on certain datatypes. Floating-point
arithmetics are not supported. We believe, that our collectives detector can be
upgraded to eventually support all regular MPI collective operations. Irregular
collectives, however, still present serious challenges due to their high degree of
flexibility, which makes it hard to formulate manageable pre- and postconditions.

5 Evaluation

To demonstrate that our method can handle even very challenging cases, we
apply it first to a set of micro-benchmarks that implement different variants
of broadcast. A case study with the HPL benchmark shows the potential for
actual performance improvements. We conducted all experiments on the IBM
Blue Gene/P Jugene installation located at the Jülich Supercomputing Centre.

5.1 Microbenchmarks

We start with a linear broadcast, as illustrated with solid arrows in Figure 6a. In
a linear broadcast, a message visits one process after another until all processes
have seen it. Thus, the communication is effectively serialized. In spite of the un-
related message traffic (i.e., the noise depicted as dashed arrows), the pattern is
correctly identified. Adding a redundant message in Figure 6b offers two choices
for the root process (P1 and P2). Both options are reported. Repeating the same
broadcast twice as in Figure 6c results in the recommendation to replace all mes-
sages involved with a single predefined broadcast. Finally, we perform a nested
broadcast by passing a token from the root to each other process (Figure 6d).
Whoever owns the token initiates an inner broadcast. Both types of broadcasts
are reported, although replacing the outer broadcast might change the order of
the inner broadcasts. The ultimate decision is left to the user. If token-passing
is extended to ring communication, our algorithm will report one instance for
each process involved because each process could be a potential root.
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Fig. 6: Four test scenarios for broadcast. All solid arrows show messages with the
same payload. Dashed arrows represent noise messages with different payloads.
The dotted arrows illustrate correctly detected broadcasts.

5.2 High-Performance Linpack

The High-Performance Linpack Benchmark [1] solves a dense linear system in
double precision and is used to rank the world’s fastest supercomputers in the
Top500 list. We selected HPL as a test candidate because it makes heavy use of
collective operations implemented via point-to-point communications. Prior to
running this benchmark, the user needs to select in a configuration file one out
of six hand-crafted broadcast implementations.

Regardless of whether the broadcasts are implemented with blocking or non-
blocking semantics in any send mode, our collectives detector correctly reported
all six HPL broadcast implementations including their source-code location plus
some others that are presumably used for synchronization. Figure 7a compares
the HPL execution time for any of the six broadcast options with the execution
time after replacing the manual variant with MPI Bcast(). The experiments re-
flect the performance for 256 cores and an input problem size of 32,000. Our
results not only show significant performance differences among the six manual
variants, but also show that the MPI broadcast always delivers superior perfor-
mance with an overall improvement of up to 9%.

Although BLongM performed worst in this test with 256 cores, we chose it for
the scaling study in Figure 7b because its bandwidth-optimized implementation
reveals benefits for larger core counts. The number of matrix elements per core
was kept at four million. Indeed, the difference between BlongM and MPI Bcast()
is most pronounced between 2k and 16k cores. Above, BLongM plays out its
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Fig. 7: Total execution time of HPL with and without manual collectives

own strength. Overall, MPI Bcast() was faster in all cases and with 8k cores
the difference was even 44%. This demonstrates that the performance advantage
of predefined collectives can be substantial and that the replacement of manual
collectives is often worthwhile. In addition, using MPI Bcast() in HPL makes
several hundred lines of code obsolete, reducing its code complexity.

6 Related Work

In this section, we compare our approach with alternative routes taken earlier.
Preissl et al. [11] pursue an almost identical objective. They not only attempt to
find collective point-to-point exchanges but also to automatically replace their
occurrences in the code with equivalent predefined MPI operations. Their solu-
tion is built around ROSE, a generator for source-to-source translators. They
trace the messages sent during program execution, match the structure of the
message graph with predefined structures representing collective communica-
tions, find the corresponding places in the code, and carry out the substitution.



The advantage of their solution is that the user does not have to do anything
except running the tool to get—in the optimal case—better code. A disadvan-
tage, however, is that no collective communication pattern can be matched ex-
cept those already thought of and stored in the tool. While this might not seem
to be very important at first, one has to consider that a user can implement a
collective communication in any way that suits him and his particular applica-
tion. For example, since different hardware topologies support different commu-
nication topologies, the precise shape of the communication pattern might be
platform dependent. Moreover, since new network topologies are being created
alongside new hardware, new patterns can emerge that are not thought of yet.
While it is possible to add them to such a solution, the maintenance cost will
rise with the number of possibilities. Also, if the number of possible patterns
increases, the time to check against all of them will grow as well. At the time
of publishing their work, the tool developed by Preissl et al. was able to detect
only one simple broadcast implementation.

Whereas the previous approach and ours search for manual collectives in
traces with dynamic content, di Martino et al. [3] attempt to detect them re-
lying only on static information. They define collectives using mathematical
abstractions and then use algebraic methods to find them. This methodology
can provide a strong basis for matching potential candidates to models of com-
munication patterns. However, PPAR, a prototypical tool based on this method,
seems restricted in the range of patterns it can interact with. Just like Preissl
et al., PPAR also tries to match known patterns of collective communications,
only that PPAR does it via source-code analysis of the program.

7 Conclusion and Outlook

We proposed a practical method to detect manually-implemented collective op-
erations in MPI programs written in any language without making any assump-
tions about the actual communication pattern. This eliminates the detection of
false negatives, which sets our approach apart from earlier work in the field.
However, there are still limitations which we want to address in the future.

Our prototype needs further work to evolve into a productive tool. As col-
lective operations involving only a subset of the processes in a given communi-
cator are not yet recognized, we plan to extend our method to also detect those
cases and to suggest the creation of sub-communicators. Moreover, our current
scheme allows fully automatic detection only for collectives such as broadcast
and alltoall. For more sophisticated collectives, the user needs to supply extra
information by inserting function calls into the program. Future versions could
extend the coverage of our detector by also reporting matches that are incom-
plete to a certain degree, carefully balancing false negatives with false positives.
Finally, to guide the user to the most promising replacement candidates in terms
of potential performance improvements, we plan to simulate the effects of a re-
placement using a real-time replay of modified traces [6]. This would permit the
user to compare the required effort with the benefit that is likely to materialize.
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