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Abstract. The Cell Superscalar framework (CellSs), from Barcelona
Supercomputing Centre, offers a high-level portable programming model
to port, parallelise and tune applications on Cell Broadband Engine. Us-
ing the native programming API of the IBM Software Development Kit
and CellSs, ease of programming and resulting performance are assessed
for a Jacobi solver and a sparse triple-matrix-multiply (TMM).
CellSs is found to be a convenient and efficient tool for achieving paral-
lelisation. The relative simplicity of the CellSs programming model and
its efficient automatic implementation of task scheduling and internal
data management greatly facilitated development of a novel TMM algo-
rithm with more efficient memory usage, which was necessary to realise
the application on Cell/B.E. within the limited SPE memory.
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1 Introduction

The high potential performance of the Cell Broadband Engine (Cell/B.E.) de-
rives from a broad spectrum of capabilities. Processor characteristics include
multiple heterogeneous execution units, SIMD processing engines, fast local store
and a software-managed cache. Applications can achieve nearly maximum the-
oretical performance if specific features are respected [1]. Exploiting the full
potential of Cell/B.E., however, is challenging for programmers who are trying
to port their applications. Since the memory of the PPE is limited to 2GB and
SPE local store is limited to 256kB [6], the amount of data is an important
aspect. Parallel tasks are initiated by calling special functions supplied in the
IBM Software Development Kit (CellSDK) SPE runtime management library
and data transfers to and from the limited local memory of the SPEs have to
be managed explicitly via DMA function calls. This means that to port an ap-
plication to Cell/B.E. a custom parallel program has to be written which can
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only run on this specific platform. To facilitate the porting of native code to
Cell/B.E., Barcelona Supercomputing Centre is developing CellSs, which pro-
poses a portable programming model for multi-core processors [2, 3].

In this paper a Jacobi solver and the triple-matrix-multiply kernel from a
wavelet-based evaluation of Coulomb potentials in molecular systems are ported
to Cell/B.E. via CellSs, and results are compared to implementations based on
CellSDK native programming API.

2 Programming with CellSs

The Cell Superscalar framework (CellSs) offers a high-level portable program-
ming model to port, parallelize and tune applications on Cell/B.E. In contrast to
the implementation using the native programming API, CellSs does not require
a complete rewriting of the application. The existing application source code can
simply be ported by inserting annotations (pragmas). There are three types of
pragmas:

1. Initialization and finalization pragma:

#pragma css start

#pragma css finish

2. Task specification pragma:

#pragma css task [input (<input parameters>)] opt

[inout (<inout parameters>)] opt

[output (<output parameters>)] opt

[highpriority] opt

3. Synchronization pragma:

#pragma css wait on (<list of expressions>)

The initialization and finalization pragmas indicate the part of the program that
will be interpreted by CellSs. If these pragmas are missing they will automat-
ically be inserted by the compiler at the beginning and end of the program.
The task specification pragmas are inserted in front of those functions which are
intended to be run on the SPEs. The attached parameter list specifies the data
that has to be transferred between PPE and SPEs and their direction. CellSs re-
quires that the application is composed of coarse grain functions and that these
functions do not have collateral effects (i.e., only local variables and parameters
are accessed). With CellSs, the task annotation before a coarse grain function
(task) does not indicate a parallel region like OpenMP, but simply indicates the
direction of the parameters of this function (input/inout/output). The CellSs
runtime system builds a data dependency graph by collecting the information
about these parameters and schedules independent tasks to different SPEs con-
currently. All data transfers required for computations on the SPEs are also
handled automatically. The synchronization pragma is necessary to wait on the
data that has to be transferred for the annotated task. The following extract
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of the CellSs code for scheme III of the triple-matrix-multiply (see section 4)
clarifies how the pragmas are applied.

#pragma css task input (wblock, A, col_idx) output (B)

void SPE_B (float wblock[BSIZE], float A[N], float B[N], col_idx)

{...}

#pragma css task input (wblock, A, col_idx) output (B)

void SPE_C (float B[N], float wblock[BSIZE], rows, float C[rows])

{...}

int main() {

...

for (blk_j=0; blk_j<w_blocks; blk_j++)

for (j=0; j<rows_of_this_block[blk_j]; j++){

SPE_B(W_BLOCK[blk_j], A, Col_B, col_index_of_B);

for (blk_i=0; blk_i<w_blocks; blk_i++)

SPE_C(Col_B, W_BLOCK[blk_i], rows_of_this_block[blk_i],

C[col_idx_of_B][blk_i]);

}

for (i=0; i<N; i++)

for (j=0; j<w_blocks; j++){

#pragma css wait on (C[i][j])

}

...

}

From the pragma equipped application code the source to source compiler gen-
erates two source files: one to be run on PPE and another one to be executed on
SPEs. These two files are then compiled by the native compiler with the desired
optimizations such as automatic vectorisation applied. CellSs at this point only
can handle a single source file. Another restriction is that only program parts
written in C can be interpreted by the CellSs compiler. That means that for
applications written in other programming languages, the parts which are to be
ported to Cell/B.E. have to be rewritten in C and equipped with CellSs prag-
mas, and interfaced to the remainder that remains in the original language. The
different source modules can then be compiled separately and linked together to
generate the final object file.

Although CellSs handles all data transfers automatically, the programmer
should nevertheless carefully calculate if the data will fit into the SPEs’ local
memory. Alignment requirements of Cell/B.E. also have to be considered: ev-
ery data object for DMA transfer has to be aligned to 16 byte addresses, and
performance is improved when aligned to 128 bytes.

Furthermore, CellSs includes an execution trace generation capability so that
the programmer can examine the time for DMA transfers, SPE task computa-
tions, waiting on data, user code on the PPE, etc., to find application imbalances
and inefficiencies.
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Fig. 1. Schematic of the blocking
strategy of the Jacobi solver scheme I.
The ghost planes (red) are integrated
in the blocks of kernel data (green).
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Fig. 2. Schematic of the blocking strategy of
Jacobi solver schemes II and III. Ghost planes
are separated from kernel data by packing
them into an extra array.

3 3D Jacobi solver

The Jacobi solver computes the solution for systems of linear equations, which
are used in a wide range of scientific applications. For a 3-dimensional problem,
the Jacobi solver basically updates each data point based on its six neighbours.
Equation 1 shows the update scheme considered in this work, where Ai,j,k are
the field values, fi,j,k the given source term and α is constant.

An+1

i,j,k = α(fi,j,k+An
i−1,j,k+An

i+1,j,k+An
i,j−1,k+An

i,j+1,k+An
i,j,k−1+An

i,j,k+1) (1)

Due to the limited size of the SPE local memory, the whole matrix must be
partitioned into smaller blocks. Blocking is also necessary to distribute the work
to multiple SPEs. The problem with blocking and distribution is that updating
the points which are located at the edge of one block needs the information of
points which belong to another block, that are on another SPE. Therefore, the
points which are needed to update the kernel data but do not actually belong
to the block are also stored. These points are called ghost points and they have
to be refreshed after every iteration, which requires data transfer.

Three different schemes have been investigated applying different blocking
strategies for matrix A and different updating methods for the ghost points.

3.1 Algorithm description

Scheme I. In the first scheme the matrix A is partitioned into cubic blocks as
displayed in Figure 1. These blocks are not disjoint because the kernel data is
extended by the ghost points, so that the blocks overlap at the ghost planes. For
each iteration the blocks are then transferred to the SPEs and the kernel points
are updated. After that the blocks are transferred back to the PPE so that the
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Fig. 3. Comparison of execution time between the three different schemes of the Jacobi
solver implementation (left) and between native CellSDK and CellSs implementations
of the Jacobi solver (right).

ghost points can be refreshed, and this procedure is repeated for every iteration.
This scheme requires several DMA transfers for every iteration (see Table 3.1).
The computational speed of this scheme is therefore limited by the speed of the
DMA transfers, i.e., by the speed of the bus.

Scheme II. With the second scheme the updating method is kept but the block-
ing strategy is changed (see Figure 2). The ghost points are now separated from
the kernel data by packing them into an extra array. For the side blocks the
correspondig places for ghost planes which are missing for this block are filled
with zeros. With this modification the ghost points can be transferred to the
SPE independently for every iteration.

Table 1. Comparison of the complexities of the three schemes of the Jacobi solver,
where M is the problem size, N the block size and Nt the number of operations

Operations Transferred data DMA transfers

Scheme I (⌈M/(N − 2)⌉)3 Nt · (2N3 + (N − 2)3) 3Nt
Scheme II (⌈M/N⌉)3 Nt · (3N3 + 6N2) 4Nt
Scheme III (⌈M/N⌉)3 Nt · (3N3 + 6N2) 9Nt

Scheme III. The blocking strategy of the third scheme is the same as the second,
but modifies the method of updating ghost points. Examining a Paraver visual-
ization of the runtime behaviour of schemes I and II showed that updating ghost
points is rather time consuming. Consequently, the exchange of data is replaced
by only exchanging pointers to the data. While the time for updating ghost
planes then decreases, the shortcoming is that time for DMA transfer increases
because the ghost planes belonging to one block cannot always be contiguously
stored in memory and therefore require a larger number of transfers.
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Fig. 4. Structure of the Wavelet matrix W (Haar Wavelet) for two different levels l of
refinement: l = 2 (left) and l = 4 (right)

3.2 Results

The best speedup was found when five SPEs are used concurrently. Comparing
the three schemes according to their execution time as done in the left of Figure 3
show that scheme II is the most efficient. It is about 30% faster than scheme I. In
the right diagram of Figure 3 the performance of version 1.2 and 1.4 of CellSs is
compared to the performance of the native implementation. It is visible that the
implementation with CellSs version 1.2 is considerably slower than the native
implementation, however, the CellSs code produced with version 1.4 significantly
outperforms the comparable native implementation with CellSDK.

4 Triple-matrix-multiply

Triple-matrix-multiply (TMM) is one part in the kernel of a program which is
used to perform a wavelet-based evaluation of Coulomb potentials in molecular
systems [4]. The calculation of long-range interactions in molecular systems is
computationally very demanding. Since all interactions between particle pairs
have to be considered, the complexity scales like O(N2) and methods have been
developed to reduce the complexity to O(NlogN) or even O(N) [5].

In the present work a mesh-based method is considered which uses a Wavelet
transform technique to calculate Coulomb interactions. The method’s kernel is
the calculation of the Wavelet transform of the inverse distance matrix A, which
is realized via the following triple-matrix-multiply:

Ã = W A WT ⇒ Ãij =
∑

k,l

Wik · Akl · Wjl (2)

The transform matrix W is sparse and has a banded structure (Figure 4), which
favours a Compressed Sparse Row (CSR) format for data storage. The inverse
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distance matrix A is dense and symmetric with dimension N × N , where N =
np ·np ·np is the number of grid points and np the number of grid points in one
Cartesian direction. Elements of matrix A can be calculated as follows:

Aij =







1

|ri − rj |
=

1

a ·
√

(ix − jx)2 + (iy − jy)2 + (iz − jz)2
, i 6= j

0 , i = j
(3)

where

ix = i % np iy = (i %(np · np))/np iz = i/(np · np) (4)

In Eq. 3, a is a the grid spacing, i and j are the indices of the elements in
A and (ix, iy, iz ) are the corresponding index tuples of matrix index i in the
three-dimensional np · np · np grid, which can be calculated via Eq. 4.

4.1 Algorithm description

Due to the Wavelet matrix W , the algorithm is based on sparse linear algebra
operations. Three different schemes were investigated, which consider different
architectural requirements.

Scheme I. The first approach considers the storage requirement for matrix A

which can become very large. To minimize storage space and DMA transfers,
the elements of matrix A can be calculated on the SPE when they are needed
(using Eq. 3). This approach is efficient in its memory usage but computationally
inefficient. Measurements for an application with np = 12 showed that more than
half of the time is spent on the computation of the elements of A and on average
each element is calculated more than 80 times.

Suppose that the average number of elements in one line of W is about Nw.
For one element of the result matrix Ã, there are about N2

w values of matrix
A which have to be calculated. Additionally 2N2

w multiplications and N2
w − 1

additions are necessary to calculate each element of the result matrix Ã. For the
calculation of the whole result matrix N2 ·N2

w values of A have to be calculated
and N2 · 2N2

w multiplications and N2 · (N2
w − 1) additions are necessary.

Scheme II. To avoid redundant re-calculation of elements of matrix A, a second
approach was to calculate the complete matrix A only once on the PPE and load
it line by line into the SPEs. Furthermore, to reduce the number of operations
the TMM is now performed in two steps as follows [7]:

Ã = W A WT ⇒ ãq = W × (A × wT
q ) (5)

In this equation ãq is the q-th column of the result matrix Ã, and wT
q is the q-th

column of the transposed Wavelet matrix WT .
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For this approach the number of operations is reduced. Calculating the whole
result matrix N2, values for matrix A have to be generated and only N2 · 2Nw

multiplications and N2 · (Nw − 1) additions are necessary. The shortcoming of
this scheme is that it needs so much memory that it can only be applied for
problems up to np = 18.

Algorithm 1 Scheme III of TMM

1: calculate the kernel of A on the PPU and load it to the SPUs
2: for blk i in w blocks do ⊲ loop over all blocks of W
3: load block blk i of W to SPU
4: for i in rows of blk i do ⊲ loop over all rows of block i of W
5: for k in N do

6: tmp = 0
7: for l in number of elements in line i of W do

8: get value Wil

9: map k and l to the three dimensional grid via Eq. 4
10: get the corresponding Akl in the kernel of A
11: calculate tmp = tmp + Akl · Wjl

12: end for

13: Bk = tmp
14: end for

15: for blk j in w blocks do ⊲ loop over all rows of block j of Wl

16: load block blk j of W to SPU
17: for j in rows of blk j do

18: tmp = 0
19: for k in number of elements in line j of Wl do

20: get value Wjk

21: calculate tmp = tmp + Wjk · Bk

22: end for

23: Ãji = tmp
24: end for

25: end for

26: end for

27: end for

Scheme III. To decrease memory usage and redundant computation, a novel
approach which is efficient on both aspects was developed. It exploits the fact
that the three-dimensional grid of the simulated system has to be mapped onto
the two-dimensional matrix A. This matrix contains the inverse distances of
every pair of grid points in the three dimensional grid. If two pairs of grid points
have the same distance, their values in A calculated via equation 3 are identical.
Since many pairs of grid points have the same distance, the matrix A contains a
lot of redundant information. That means that it is enough to store only O(N)
values for the kernel of A instead of O(N2) values for the whole matrix A.
With other words only one row of matrix A has to be stored which still has
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Fig. 5. Execution time comparison between native CellSDK and CellSs implementa-
tions of the Wavelet transform with level l = 2 and l = 4 for W (Haar Wavelet)

little redundancy. The correct distance can be calculated by mapping the two-
dimensional addressing of A back onto the three-dimensional addressing of the
system’s grid as shown in equation 4.

In this scheme the TMM is still calculated in two steps as shown in Algo-
rithm 1. The non-redundant part of matrix A is calculated on the PPE and
is loaded into the SPEs local memory at the beginning of the calculation. The
Wavelet matrix W is blocked and loaded blockwise onto the SPEs. The result
matrix is then calculated in two steps column by column, whereas the interme-
diate result Bk is buffered on the SPE and not transferred back to the PPE.

4.2 Results

The third approach turned out to be the most efficient one. In Figure 5, the
execution time for TMM implemented via CellSs version 1.4 for different matrix
dimensions and Wavelet transforms is compared to the implementation using
CellSDK. It is apparent that the behaviour of the two implementations for in-
creasing matrix dimensions is nearly the same. The CellSs code, however, is
consistently 10–20% faster than the native CellSDK version. The reason for the
difference is that double buffering is not yet implemented in the native version
while it is automatically applied by CellSs.

5 Conclusions and future work

A Jacobi solver and triple-matrix-multiply were implemented with different al-
gorithms to evaluate parallelisation with CellSs. Although current limitations of
CellSs (v1.4) present certain difficulties (particularly with respect to support for
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applications written in C++ or Fortran), it provides programmers a flexible pro-
gramming model with an adaptive parallelism level that provided acceptable per-
formance and portable code, while considerably simplifying Cell/B.E. program-
ming. In particular, CellSs automatically implements efficient double-buffering of
data transfers, which are complicated to implement natively with the CellSDK.
A novel algorithm was thereby developed for triple-matrix-multiply, which is
efficient in both storage requirements and computation, ultimately making the
algorithm published in [4] realisable on Cell/B.E.Although significant effort was
invested in the current implementations, it is still introductory work without
vectorisation and pipelining optimisations. With new versions of Cell/B.E. and
CellSs, further performance improvements are also expected.
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5. Paul Gibbon and Godehard Sutmann, Long range interactions in many-particle sim-

ulation. In Quantum simulations of many-body systems: from theory to algorithms,
NIC Series, volume 10, pp. 467-506. John von Neumann Institute for Computing,
Forschungszentrum Jülich, Feb. 2002.
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