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Abstract

In message-passing applications, the temporal or spatial distance between cause and
symptom of a performance problem constitutes a major difficulty in deriving helpful con-
clusions from performance data. So just knowing the locations of wait states in the program
is often insufficient to understand the reason for their occurrence. We therefore present
a method for verifying hypotheses on causal connections between temporally or spatially
distant performance phenomena without altering the application itself. The verification is
accomplished by modifyingMPI event traces and using them to simulate the hypothetical
message-passing behavior. By performing a parallel real-time reenactment of the commu-
nication to be simulated using the original execution configuration, we can achieve high
scalability and satisfactory predictive accuracy in relation to the measured behavior. Not
relying on a potentially complex model of the message-passing subsystem, our method is
also platform independent.

1 Introduction

World-wide efforts to build supercomputers with performance levels in the petaflops range ac-
knowledge that the requirements of many key applications can only be met by the most advanced
custom-designed large-scale computer systems. However, as a prerequisite for their productive
use, theHPC community needs powerful and scalable performance-diagnosis tools that make the
optimization of parallel applications both more effectiveand more efficient [10].

One major difficulty application developers are confronting with traditional performance
tools is that the tools often diagnose only the symptoms of performance problems but not nec-
essarily their causes. In fact, the symptoms may appear (i) much later than the event causing
it, (ii) on a different processor, or (iii) both. The temporal or spatial distance between cause
and symptom constitutes a substantial challenge in deriving helpful conclusions from a set of
performance data. Especially in message-passing applications, load imbalance may create wait
states at the next synchronization point following the imbalance. Since some processes arrive



later at this point due to a higher share of the overall workload, those arriving earlier have to
wait. Especially when trying to scale communication-intensive applications to large processor
counts, such wait states can present severe challenges to achieving good performance. Of course,
these effects are not necessarily confined to load imbalanceand may be initiated by a large vari-
ety of behaviors including disparate communication requirements or coordination activities that
are performed only by designated processes. Additionally,messages may propagate wait states
from one process to the next, creating potentially complex and far-reaching propagation chains.
Finally, the individual contribution of a performance phenomenon to a given wait state is hard
to quantify because wait states may occur as a superpositionof several influences.

In our earlier work on theSCALASCA toolset [6], we have shown that wait states inMPI

message passing can be identified by searching event traces for characteristic patterns – even at
very large scales. Here, we present a complementary approach aimed at better understanding
their causes. Drawing from earlier ideas on trace-based performance prediction [9, 7, 16, 17], we
have designed and implemented a simulator calledSILAS (SImulation of LArge-Scale parallel
applications) that can be used to verify hypotheses on causal connections between different
performance phenomena at very large scales. The verification is accomplished by modifying
event traces according to a hypothesis and using them to simulate the hypothetical message-
passing behavior. The predicted behavior can then be scanned for wait states to investigate how
the modification would influence (and hopefully reduce) their occurrence in various parts of the
program. Typical questions the simulation can answer include how the performance behavior
changes if a specific computation is more evenly distributedacross the machine or if a specific
communication operation is replaced or eliminated.

As a distinctive property, the simulator performs a parallel real-time reenactment of the com-
munication to be simulated using the original execution configuration. Supporting conclusions
with respect to the same hardware and an identical number of processes, our approach offers the
following advantages:

• Scalability – Since the simulation is carried out at the original scale, that is, on as many
CPUs as have been used to generate the traces, processing capabilities (i.e., both processors
and memory) grow proportionally with the number of application processes, allowing us
to simulate execution configurations with thousands of processes.

• Accuracy and platform independence – The real-time replay eliminates the need formod-
eling communication and, thus, removes a major source of prediction inaccuracy. At
the same time, using the communication substrate of the target system automatically in-
tegrates the most important platform-specific parameters at basically no additional per-
platform design cost. Porting the simulator to a new system is therefore straightforward.

The simulator has been designed to enhance the trace-analysis functionality of the
SCALASCA toolset by adding accurate and scalable predictive capabilities. Our ultimate ob-
jective is to go beyond the present localized wait state diagnosis by automatically identifying
and evaluating hypotheses on how the detected wait states can be most effectively removed. The
current prototype of the simulator has been tested and evaluated on Blue Gene/L.

In this article, we give an overview of the simulator and showhow it can be used to accurately
predict the effects of very fine-grained changes in the application behavior. We start with a
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review of related work in Section 2. In Section 3, we describethe basic workflow of verifying
optimization hypotheses, outlining the usage of the simulator in the context of theSCALASCA

toolset. In Section 4, we illuminate fundamental design principles, explain key mechanisms,
and discuss limitations. Experimental evidence of accurate predictions at larger scales using
both synthetic benchmarks and real applications is presented in Section 5. Finally, in Section 6,
we conclude the paper and outline future directions.

2 Related Work

The principle of trace-driven performance prediction has already been intensively studied. Sev-
eral approaches have addressed questions about performance implications when varying archi-
tectural parameters, such asCPU speed and network latency and bandwidth, and to a lesser
extent also when introducingsynthetic perturbations[8] that reflect modified application-level
behavior.

Mendes transforms event traces of message-passing applications according to a prediction
model based on relative processor speed, optionally differentiated by code section, and message
transfer times previously obtained from benchmark measurements as a function of the message
size [9]. Since the order in which messages are received may be sensitive to changes in the
execution configuration and an unstable message order may adversely affect simulation fidelity,
the stability of the order is verified prior to the simulationby repeatedly introducing short delays
(i.e., perturbations) into the code and comparing the message order recorded in trace files to the
original order.

An early performance-analysis toolkit offering trace-based simulation capabilities as one
element of a comprehensive feature catalog isAIMS [16], which estimates the scalability of
parallel applications by extrapolating previously generated execution traces to higher numbers
of processors and larger problem sizes. The extrapolated traces can be subsequently analyzed
using standard trace-analysis modules provided by the toolkit.

Originally motivated by the need to study the sharing of multiprocessors among multiple
applications,DIMEMAS [7] provides the ability to simulate the execution behaviorof parallel
programs based on previously generated event traces. The processes used to generate the traces
match the number of simulated processes, but may share a smaller number of physical processors
during the instrumented run. The underlying prediction model allows the adjustment of relative
processor speeds, network bandwidth and latency within andacross nodes, the number of input
and output links, and the processor scheduling policy. Additionally, DIMEMAS can distinguish
between networks with full connectivity and bus-based networks with potential bus access con-
flicts. While DIMEMAS itself is a sequential tool, traces used as input forDIMEMAS stem from
message-passing or multithreaded programs. The traces produced as output can be analyzed
using the Paraver [7] trace browser, taking advantage of itspowerful time-line visualization
and rich statistical functionality. Besides simple architectural parameter studies,DIMEMAS has
been used to investigate the effects of scaling individual program states and to develop analyt-
ical models as functions of latency, bandwidth, processor speed, and the number of processors
by extrapolating simulations from multiple traces [11]. Moreover, it has been instrumental in
designing cooperative caches [4] and predictingMPI application behavior in grids [2]. An ap-
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proach similar in spirit to the one taken inDIMEMAS has also been used in theKOJAK project to
compensate for perturbation errors caused by instrumentation overhead [13].

Predicting application performance for emerging architectures larger than those at one’s dis-
posal is the focus of BigSim [18]. Based on Charm++, an object-based and message-driven
parallel programming language, BigSim combines an emulator that is capable of running larger
numbers of virtual processes on a smaller number of physicalprocessors with a postmortem
simulator that uses traces generated during an emulated run. The simulation occurs in two steps:
At runtime, the emulator already corrects timestamps of individual messages. After program ter-
mination, the simulator accounts for network contention and topological characteristics. If the
memory requirements of the application are larger than the memory available to the emulator,
data may be swapped out to the file system while not being used.

Compared to the approaches described above, our work clearly concentrates on the effects of
fine-grained alterations of application-level behavior with respect to the performance under an
identical execution configuration. Typical use cases include the balancing of individual functions
or the elimination or replacement of communication operations. The most important method-
ological difference is the use of a parallel real-time replay of the simulated communication at
the original scale, which offers scalability advantages and relieves us of the burden of modeling
the extremely complex communication infrastructures found on today’s large-scale machines.

3 Hypothesis Verification

In this section, we describe the typical usage scenario of our simulator in the context of the
SCALASCA toolset. SCALASCA has been specifically designed for use on large-scale systems
including IBM Blue Gene and CrayXT, but is also well-suited for small- and medium-scaleHPC

platforms. A distinctive feature is the ability to identifywait states in event traces ofMPI appli-
cations with very large numbers of processes using a parallel replay of the target application’s
communication behavior [6]. During the wait-state analysis, SCALASCA searches process-local
event traces in parallel for characteristic patterns indicating wait states and related performance
properties, classifies detected instances by category and quantifies their significance. The result
is a pattern-analysis report similar in structure to a typical call-path profile but enriched with
higher-level communication and synchronization inefficiency metrics that provide information
on the type, location, and severity of wait states. The report can be interactively examined in a
visual report explorer (Figure 4).

Looking for ways to extend our trace analysis toward a betterunderstanding of the relation-
ship between imbalanced execution and wait states, we soon realized that finding the cause of a
given wait state by searching the trace backward in time would be much harder than verifying
whether a suspected cause can be held responsible. This leadto the idea of designing a trace-
based simulator, capable of operating at very large scales and accurate enough to predict the
long-range effects of potential optimizations on the formation of wait states later in the program.
Since no source code modification is required, we hope that itwill become possible to automat-
ically test a larger number of optimization hypotheses derived from the original trace data and
rank them according to the expected performance benefit to identify the most promising ones.

Figure 1 illustrates the role of the simulator in the procedure of verifying hypotheses on
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Figure 1: Workflow for verifying optimization hypotheses. Grey rectangles denote pro-
grams, white rectangles with the upper right corner turned down denote files, and white
rectangles with rounded corners denote data objects residing in memory. Stacked symbols
indicate multiple instances of programs, files, or data objects running or being processed
in parallel. The target application generating the event trace is the entry stage of the work-
flow. Judging the difference between normal execution and the predicted outcome of the
optimization displayed in the report explorer is the final stage.

causal connections between temporally or spatially distant performance phenomena. The gen-
eral objective of the process is to generate pattern reportsfrom both the measured and the pre-
dicted behavior and compare the results to allow conclusions on the effects of hypothetical pro-
gram modifications with respect to wait states and other performance metrics. The workflow
starts with running the instrumented target application inthe execution configuration we want
to make predictions for and generating an event trace consisting of one trace file per applica-
tion process. During all subsequent steps, access to the event trace occurs through a parallel
object-oriented high-levelAPI [5]. The primary usage model of theAPI assumes a one-to-one
mapping between application and tool processes, that is, for every process of the target applica-
tion, one tool process is created that loads the corresponding trace data into main memory and
offers random access to individual events. In addition, theAPI provides abstractions allowing
the convenient exchange of event objects. At a lower level, data exchange among tool processes
is accomplished viaMPI communication.

A hypothesis includes the specification of a trace transformation, which may prescribe the
adjustment of event timestamps, the deletion of existing events, or the insertion of new events to
model changes in the application’s source code. As already pointed out, our ultimate objective
is the automatic derivation of suitable hypotheses from theoriginal trace data, for example, af-
ter identifying local or global load imbalances or other disparities among application processes
(shown in Fig. 1 using dashed lines). Currently, a set of parameterized standard transformations
including the scaling of functions or the elimination of messages can be specified via a configu-
ration file and provided as input to the trace-transformation stage. Arbitrary transformations can
be implemented as hand-written programs utilizing the aforementioned trace-accessAPI, which
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has been extended for this purpose by adding an interface to modify the trace data.
After the transformation has been applied, the simulator performs a parallel real-time replay

of the events stored in the trace. Computation intervals aresimulated simply by elapsing the
time in between using busy wait, whereas communications aresimulated by reenacting the com-
munication operations recorded in the trace. Thus, the timeof a communication is determined
by the time needed to execute the correspondingMPI call under modified conditions. As the
simulation progresses, event timestamps are adjusted to reflect the time elapsed since simulation
start. Obviously, keeping all the trace data in memory is an essential prerequisite for performing
the simulation in real time because reading the trace data from file in the course of the replay can
severely compromise simulation accuracy unless such interruptions are appropriately accounted
for.

Finally, a pattern search is performed on both the original and the simulated event trace.
The main target of the search is the classification of wait states and their quantification broken
down by call path and process. The results of the two analysesare subtracted using a difference
operator [12] defined over the set of potential search outputs. For every type of wait state, the
operator essentially calculates the element-wise difference between corresponding (call path,
process) matrices, taking into account that the simulated run may exhibit call paths not present
in the original run and vice versa. The difference data set can be visually explored to assess the
changes the modified behavior has brought about, in particular with respect to the reduction or
migration of wait states (Figure 4). Propagating the effects of changes starting from the point of
their injection onwards through the entire execution and also carrying influences over to remote
processes, our simulator allows the verification of causal connections between temporally or
spatially distant performance phenomena within the confidence limits our simulator offers.

4 Replay-based Simulation

In this section, we examine the core simulation workflow (shaded area in Fig. 1) in more detail.
Using the simple example depicted in Figure 2, we illustratethe two elementary steps of trace
transformation and simulation. We explain fundamental design principles of the simulator and
discuss techniques applied to ensure satisfactory simulation accuracy.

4.1 Trace Transformation

An event trace is an abstract representation of execution behavior codified in terms of events.
Every event includes a timestamp and additional information related to the action it describes.
The event model underlying our approach [14] specifies the following event types:

• Entering and exiting code regions. The region and the call path are specified as event
attributes.

• Sending and receiving messages. Message tag, communicator, and size are specified as
event attributes.
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• Exiting collective communication operations. This special exit event carries event at-
tributes specifying the communicator, the amount of data sent and received, and the root
process if applicable.

MPI point-to-point operations appear as either a send or a receive event enclosed by enter
and exit events marking begin and end of theMPI call, whereasMPI collective operations appear
as a set of enter / collective exit pairs (one pair for each participating process). Our event model
currently ignores other types of communication, such asRMA, and fileI /O.

At a lower level, the event trace can be modified by altering event timings, deleting exist-
ing events, inserting new events, and otherwise changing arbitrary event attributes relevant to the
replay. Since all events carry absolute timestamps, the modification of a timestamp may necessi-
tate modifying the timestamps of subsequent events. Modifying the end times of communication
operations is not necessary because these times will be “measured” during the simulation, as we
will see in Section 4.2. As preliminary model of a higher-level mechanism, we have imple-
mented a few sample hypotheses, such as scaling regions or balancing regions among processes
both globally and on a per-instance basis. Moreover, messages can be removed depending on
their tag and whether their size exceeds or falls below a certain threshold. Further hypotheses,
such as substituting communication operations or modifying message parameters, will be added
as we gain more experience with application test cases. The use of a higher-level mechanism,
which is currently accessible via a configuration file supplied as input to the simulator, has the
advantage that consistency constraints ensuring the logical integrity of the trace (e.g., avoiding
dangling messages sent without matching receive event) canbe more easily enforced.

Figure 2(a) shows an event trace generated from twoMPI processes. After executing the
functionsfoo() andbar() in a row, both processes engage in two message communications
via matching pairs ofMPI Send() andMPI Recv(). Whereas the first time the message is sent
from A to B, the second time the message is sent in the oppositedirection. Apparently, function
foo() exhibits an imbalance because process B spends less time infoo() than process A does.
Functionbar(), in contrast, is entirely balanced. The imbalance infoo() indirectly causes
process B to wait for the message sent by A during the first communication, a situation also
known asLate Sender. No wait state can be observed during the the second communication.

Our obvious hypothesis is that the wait state in the firstMPI Recv() can be removed by
balancing functionfoo() with expected benefits for the overall performance. Balancing foo()
during trace transformation yields the trace shown in Figure 2(b), with the timestamps of events
e2 ande12 being modified and the timestamps of all subsequent events adjusted accordingly. Of
course, the lengths of the communication intervals now seemdistorted because theMPI calls are
simply shifted to the left or to the right without accountingfor changes that would occur if the
MPI calls were carried out under these new conditions. Note thatthe receive event of process
A (e9) now happens before the matching send event (e19), violating the causal event order. The
task of rectifying this distortion is left to the actual simulation.

4.2 Simulation

As event traces model only a very restricted view of the application behavior, the simulator faces
the challenge of having to approximate both computation andcommunication accurately enough
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Figure 2: Original event trace (a), event trace after trace transformation (b), and simulated
event trace (c). Circles denote enter and exit events, squares denote send and receive events.

to produce realistic events timings in the output trace. Because input and output of the simulator
are on the same abstraction level, our primary focus is the length of intervals between events but
not necessarily what happens inside.

The general principle of the simulation is to traverse the event trace in parallel, each simula-
tion process being responsible for a different applicationprocess, whose trace data resides in the
memory of the simulation process. During the traversal, each simulation process examines the
events assigned to it in chronological order and takes different actions depending on the type of
the event and its associated interval. The traversal is performed in real time, that is, an event is
reached at the time it is supposed to occur during the simulated run. For the purpose of the simu-
lation, we regard everything that occurs outside a communication operation as computation. As
a general rule, computation intervals are simply elapsed, whereas communication intervals are
filled by reenacting the corresponding communication operation. In the course of the simulation,
timestamps are successively changed to simulated time.
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Start up. TheMPI standard neither specifies a certain order in which individual MPI processes
must be initialized, nor can we assume that the relative times at whichMPI processes leave
MPI Init() remain stable across runs. Although it is hard to assess the significance of this
effect on the performance behavior on a general level, we have decided to recreate the orig-
inal conditions for our simulated run. Initially, all processes wait in a barrier. The earliest
timestamp recorded in the event trace, which is collectively identified via a minimum reduction,
defines the starting point. At the beginning, all processes wait until the time difference between
their own local and the global minimum timestamp has expired. The initial temporal offset is
thus treated like a computation interval, as explained below. This procedure ensures that the
simulated trace will show process initialization in the order of the original trace, keeping the
perturbation caused by non-deterministic startup as smallas possible. Likewise, the original
time spent inMPI Init() along with any overhead introduced by the tracing library isretained.
The influence of the overhead, however, is later removed fromthe pattern-search output.

Computation. A computation interval is simulated by elapsing the corresponding time span,
whether it is still the original one or whether it has been modified during trace transformation.
This is accomplished by calling a wait function, supplying the requested time interval as an
argument to a simple busy wait, implemented using highly-accurate timers available on the
target system. We have found this to be a portable solution, as the timer functionality is already
provided by theSCALASCA infrastructure in a platform-independent way.

Communication. To accurately replay the communication, we use the communication oper-
ations specified in the modified event trace with identical send and receive buffer sizes. Since
the data type is not recorded in the trace, we always transferarrays of typeMPI BYTE. The cur-
rent event model used bySCALASCA already provides enough information to simulate most
synchronousMPI point-to-point and collective operations. Since the actual contents transferred
during the simulation has generally no direct influence on the performance behavior, reusable
message buffers can be allocated in advance after determining the buffer requirements of each
process, eliminating the allocation overhead at runtime. Extensions to cover a wider range of
operations including non-blocking communications that will be sufficient to support most of to-
day’s MPI codes are straightforward and already in progress. Emulating the way typicalPMPI

wrapper functions are implemented, the clock value before or after performing the communi-
cation determine a send operation’s send and exit timestamps or a receive operation’s enter and
receive timestamps, respectively. The remaining events ofentering the send operation or leaving
the receive operation are processed as part of the precedingor the following computation phase.

Figure 2(c) shows the simulated trace based on the assumption that functionfoo() can
be perfectly balanced. Since eventse5 and e15 now occur simultaneously, the waiting time
inside the first receive operations disappears, leaving eventse7 ande17 at the same position on
the time axis. As a consequence, both processes enter the second communication at the same
time (e8 and e18), correcting the causality violation still visible in 2(b). As a net result, our
simulation predicts that balancing functionfoo() reduces the overall execution time by the time
indicated in the diagram. Note that the simultaneous completion of matching communication
operations has only been chosen to keep the example simple and does not represent an inherent

9



assumption of our simulator. Of course, the communication reenactment would account for
potential completion offsets occurring under real conditions.

4.3 Small Intervals

One potential source of inaccuracy in our approach is the simulation of small intervals – espe-
cially of those that are smaller than the resolution of our wait function. Every call to this routine
incurs a certain overhead, as it requires querying the system timer at least once. In general, the
relative error introduced by this function is indirectly proportional to the length of the interval to
be simulated. It is therefore preferable to reduce the granularity of the time measurements and
make the time spans spent waiting as long as possible.

For this reason, adjacent computation intervals are grouped together in a preprocessing step
and later simulated in one chunk. After the replay, the timestamps of events delimiting indi-
vidual parts of this super-interval are readjusted according to their relative distance. While this
technique works well for consecutive computation intervals, communication intervals imme-
diately following each other (e.g.,MPI calls in a tight loop) still pose a challenge. The time
interval between individualMPI calls can be smaller than the minimum time interval that can
be simulated by our wait function. As a remedy, such intervals are approximated without call-
ing the timer. To further reduce the per-event replay overhead, the decision whether an interval
qualifies for approximation is made in advance. Currently, the approximation is based on con-
figurable thresholds, but a more automated calibration mechanism that calculates the thresholds
at simulator startup is already under development.

4.4 Limitations

Below we discuss limitations of our approach, distinguishing temporary ones that can be re-
solved in the future by extending our event model from fundamental and ones that are inherent
to the approach itself.

Currently, our simulator is not capable of correctly replaying asynchronousMPI point-to-
point communication, as information on communication requests is not yet properly recorded
in the trace data. Likewise, the non-determinism expressedin wildcard receives using
MPI ANY SOURCE and/orMPI ANY TAG is not retained. Instead, the replay uses source and tag
information identified during trace acquisition, thus, restricting the order in which messages are
received during the simulation to the order previously observed. However, the required infor-
mation can in principle be recorded in event traces to correctly model these two aspects. An
appropriate extension of the event model is currently beingpursued.

Furthermore,MPI collective operations transferring a different amount of data per process,
such asMPI Gatherv() orMPI Alltoallv(), can only be approximated using their less specific
counterparts, as only the aggregate amount of data sent and received is currently recorded for
these routines. The additional space requirement of storing data sizes broken down by source
or destination process would have to be weighed against expected accuracy benefits. Also, our
current approach is oblivious of data types, which may misrepresent the computational overhead
associated with reduction operations. Especially processing and transferring user-defined data
types would be hard – and in some instances even impossible – to simulate exactly.
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Moreover, fileI /O is currently not distinguished as such and treated in the same manner as
computation intervals are, that is, it is simulated using the busy wait function. Although in theory
it would be feasible to replay this as well by tracing the typeof file operation and the amount of
data read or written, the large variations inI /O performance usually observed (e.g., in response
to the overall load of the file system) render this option an uncertain alternative. Finally, we
are aware that just spinning during computation intervals ignores potential interactions between
processes through the memory subsystem. By shifting the relative time at which concurrent
memory accesses of processes co-located on the sameSMP node take place, the overall memory
bandwidth requirements may change. Please note, however, that most of these issues reach far
beyond the fidelity of analytical approaches our method can be compared to.

Another fundamental issue touches the question to what extent the hypotheses expressible
within the limits of our event model can reflect real code changes. For example, redistributing
load in reality might also alter the communication requirements and influence number and size
of messages that must be sent and received. While such changes can in principle be addressed
by our simulation scheme, the challenge lies in managing thecomplexity of specifying these
dependencies when defining optimization hypotheses. We argue, however, that as a first hint
at potential optimizations, the simple hypotheses we currently support can already deliver a
sufficiently accurate picture.

5 Examples

In this section, we report on the experiences gained so far with our simulator using both syn-
thetic benchmarks, where the code can be more easily modifiedto reconstruct the hypothetical
behavior in reality, and more complex real-world applications. After validating the overall accu-
racy of the simulation using unmodified trace data, we verified optimization hypotheses related
to load balancing and improved communication behavior. Allexperiments were performed on
the 8-rackIBM Blue Gene/L systemJUBL at Forschungszentrum Jülich in coprocessor mode.

5.1 Identity Simulation

One way of validating the overall simulation accuracy is to perform anidentity simulation, that
is, replaying an recorded event trace without applying any prior transformation, and comparing
the predicted to the original behavior. For this purpose, wechose theASC SWEEP3D benchmark
code [1], anMPI application which calculates the flux of neutrons through each cell of a three-
dimensional grid along several possible directions of travel. We conducted measurements at a
range of scales from 32 to 4,096 processes. The application was configured to run for a few
minutes, with the problem size per process being roughly constant (i.e., weak scaling).

In our experiments, the deviation of the overall execution time predicted by the simulator
from the execution time measured during an actual run was rather small, typically in the order of
less than 0.5 percent. As positive and negative errors occurring in different parts of the program
may compensate each other, we determined the aggregate absolute error across all (call path,
process) combinations. The deviation in relation to the total execution time was less than 0.8
percent in all configurations, demonstrating that a reasonable level of accuracy was sustained
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throughout the entire program. The instrumentation overhead created during trace acquisition
was negligible for all configurations.

5.2 Load Balancing

Load imbalance is a common source of wait states in message-passing applications. Here, we
present two synthetic benchmark programs with wait states being indirectly induced by load
imbalance, propagating to the affected communication across a longer range of execution time
through a phase of balanced behavior (Figure 3). Using thesetwo examples, we demonstrate
our simulator’s ability to accurately predict the reduction of waiting time after removing the im-
balance, thus verifying a causal connection between these two distant performance phenomena.

The first example is calledLB-COLL and generates aWait at N×N inefficiency pattern, where
a load imbalance induces waiting times at the next synchronizing collective communication.
Figure 3(a) shows one possible incarnation of this pattern,as it appears in our example. In this
program, a sequence of three function calls is executed inside a loop of 100 iterations. The first
routine is calledfoo(), emulating a load imbalance by making the execution time dependent
on the rank number. The last function call in each iteration is MPI Allreduce(), implicitly
synchronizing all processes involved due to the all-to-allcharacter of the communication. To
show the long-range effects of the perturbation introducedby the imbalance, a routinebar() is
executed in between, taking the same amount of time for each process.

The second example is calledLB-P2P and generates aLate Senderinefficiency pattern, as
depicted in Figure 3(b). Load imbalance between processes with odd and even rank numbers
causes processes A and C to wait in a later point-to-point receive operation. In this more complex
case, not only computational phases (i.e., calls tobar()) appear between cause and symptom of
the imbalance, but also additional communications involving other combinations of processes.
Again, 100 iterations of the illustrated behavior were performed.

In both cases, the simulator was used to verify the hypothesis that the imbalance in function
foo() is mainly responsible for the later occurrence of wait states and that balancing it would
substantially contribute to their reduction. To validate the accuracy of our prediction, the result
was compared to measurements with a version of the program that had been previously modified
according to our hypothesis. Like in the previous case, the experiments were performed on a
range of scales from 32 to 4,096 processes. In relation to theresults obtained for the identity
simulation ofSWEEP3D, the overall prediction accuracy was even better for both examples (in
the order of±0.002%, i.e., showing only measurement noise). Contrasting the pattern search
results of the original runs with the results of the simulated optimized runs using the difference
operator introduced in Section 3 revealed that the simulated balancing of functionfoo() indeed
eliminated the majority of the Late Sender pattern instances, as was expected. This result was
also confirmed by the measured optimized runs.

5.3 Altering Communication Behavior

XNS [3], a computational fluid dynamics application based on finite-element techniques on ir-
regular three-dimensional meshes, serves as an example fora very substantial alteration of com-
munication behavior. The code consists of roughly 45,000 lines of mixed Fortran and C in more
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point-to-point communication operation between pairs of even and odd ranks.

Figure 3: One iteration of each of the two synthetic examplesLB-COLL and LB-P2P,
illustrating the long-range effects of load imbalance in function foo().

than 100 files and has already been subject to performance analysis and subsequent optimization
using theSCALASCA toolset [15]. During this work, the unnecessary use of zero-sized point-to-
point message transfers has been identified as a major scalability bottleneck. With respect to our
simulation approach, this application example was especially interesting as it not only allowed
us to show the contribution of a single performance problem to the formation of wait states in
point-to-point communication, but also the accurate prediction of secondary effects, such as the
migration of wait states after eliminating the point of their initial materialization.

The basis of our investigation was an event trace acquired for one simulation time step
during a run with 1,024 processes using a version of the program where theMPI Sendrecv()
calls responsible for the zero-sized messages had already been replaced with pairs of individual
calls toMPI Send() andMPI Recv(). In future work, we plan to utilize the trace modification
API outlined in Section 4.1 to perform this step automatically during the trace-transformation
stage without touching the source code itself. According topattern search results obtained for
the original trace, the application suffered from a high fraction of time spent inMPI (59.9%)
with roughly half of it attributable to Late Sender wait states.

Our transformation consisted of eliminating all transfersof zero-sized messages occurring
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(a) Difference between the original and the simulated optimized behavior.

(b) Difference between the original and the measured optimized behavior.

Figure 4: The SCALASCA report explorer displaying the distr ibution of execution-time
savings in XNS after removing zero-sized messages. All values are percentages of the orig-
inal total execution time. Positive values (icons with raised reliefs) denote savings whereas
negative values (icons with sunken reliefs) denote losses.Expanded nodes represent only
the fraction not already covered by their children.

inside two problematic routines identified during an earlier trace analysis to assess their contri-
bution to the wait states observed. Although conceptually simple, applying the transformation
meant eliminating more than 1.2 billion messages from the trace, which corresponds to more
than 90% of the total number of message transfers.
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Figure 4(a) shows the difference between the pattern searchresults for the original run and
the simulated optimized run. The predicted overall improvement (not shown) was 46.9% com-
pared to a measured improvement of 49.4%. The simulator predicts not only significant savings
with respect to Late Sender wait states (22.6% of the original execution time), but also the mi-
gration of a smaller amount of waiting time to barrier synchronizations (2.6%) as a secondary
effect. For comparison, Figure 4(b) depicts the equivalentoutput for the difference between the
original run and the measured optimized run. As can be seen, the obviously small deviations
mostly affect the Late Sender metric, with the actual savingexceeding the prediction by about
2% of the original execution time. On the other hand, the predicted extent even of the relatively
small secondary effect of wait state migration to barrier calls closely matches the measured ex-
tent. Thus, our simulator was able to establish a causal relationship between zero-sized messages
and Late Sender wait states as well as to foresee a small amount of wait-state migration after
their removal with reasonable accuracy.

6 Conclusion

We have presented a novel approach to verifying hypotheses on causal connections between dis-
tant performance phenomena inMPI message-passing applications without altering their source
code. Using trace-based simulation in the original execution configuration, we can accurately
assess long-range effects of a variety of behaviors relatedto computation and communication.
Since the simulation correctly propagates the influence expressed by an optimization transforma-
tion even across process boundaries via message communication, the initial cause and the final
symptom may also be separated along the space dimension. Themethodological key difference
to earlier approaches is a parallel real-time reenactment of the simulated communication at the
original scale, allowing the efficient simulation ofMPI applications with thousands of processes.
Moreover, since the reenactment eliminates the need to model the extremely complex commu-
nication infrastructures found on today’s large-scale machines, our approach is also platform
independent. Accurate predictions were shown for examplesof increasing complexity with up
to 4,096 processes.

As a next step, we plan to incorporate support for asynchronous communication and wild-
card receive operations, as anticipated in Section 4.4, andevaluate our simulator with a broader
range of realistic codes. As our ultimate goal is automatically identifying suitable optimization
hypotheses, the simulator is intended to form the core component of a more universal tuning
framework, where it will be used to verify optimization hypotheses derived from the original
trace data. For this purpose, our future work will include the development of new trace-analysis
algorithms with emphasis on the characterization of load and communication imbalance.
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[17] G. Zheng, G. Kakulapati, and L. V. Kalé. BigSim: A parallel simulator for performance prediction
of extremely large parallel machines. InProc. of the 18th International Parallel and Distributed
Processing Symposium (IPDPS), Santa Fe, New Mexico, April 2004. IEEE Press.

[18] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kal´e. Simulation-based performance prediction
for large parallel machines.International Journal of Parallel Programming, 33(2-3), June 2005.

17






