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Abstract—Cluster batch systems usually support only static
allocation of resources to applications before job start. After
job start, applications cannot increase or decrease their resource
set. However, some applications unpredictably evolve during
execution and thus may require additional resources. If the extra
resources cannot be delivered during runtime, those applications
may have to run longer to finish, or are not even able to finish
when their job’s time slice expires. Likewise, a job may have to
end without additional resources due to hardware limits being
reached, such as the memory available to the compute node. To
avoid such scenarios, users have to make large static allocations
to account for a potential demand for resources. This leads to
wastage of resources as they idle before they might actually
be used at an unknown point. In this paper, we propose a
batch system with dynamic allocation facilities to support on-
the-fly resource allocation to unpredictably evolving jobs based
on demand. We present a novel dynamic resource allocation
strategy that also accounts for a fair assignment of resources
between the usual rigid jobs and the evolving jobs. The results
for a CFD production application and a mixed workload of rigid
and evolving jobs (based on the widely used ESP benchmark)
show that our system not only reduces the job waiting and job
turnaround times, but also increases system utilization and system
throughput.

Keywords—dynamic resource management; dynamic schedul-
ing; batch systems

I. INTRODUCTION

The batch system is an essential middleware for managing
supercomputing resources. A cluster batch system consists
of a resource manager (RMS) and a scheduler which work
together to efficiently schedule resources to jobs. Resources
are mapped to jobs based on their requirements, which include
the number of processors, memory, accelerators and software
requirements. The allocation mechanism depends on the type
of job under consideration. As defined by Feitelson and
Rudolph in [1], jobs can be classified in four categories based
on their flexibility. The most common type are rigid jobs which
require a fixed number of processors and the batch system must
allocate all the resources requested. The second class of jobs
are moldable jobs, in which a requirement can be molded or
modified by the batch system before starting the job. In such
a case, the application must be prepared to run on less or
more processors than required. For rigid as well as moldable
jobs, the allocation is made before job start and hence is static
in nature. The third class of jobs, known as malleable jobs,
allow the batch system to shrink or grow the job’s resource
allocation during the application execution. Since the grow

or shrink operation is initiated by the batch system, this is
an effective strategy to improve cluster utilization and job
waiting times. However, shrinking the resource set may lead to
larger turnaround times for these jobs. The final class of jobs,
known as evolving jobs, may also grow or shrink its reservation
during runtime. However, in contrast to malleable jobs, the
grow or shrink operation is initiated by the application itself.
The application may request more resources or release a part
of its existing allocation during execution. The scheduler must
handle such circumstances appropriately. Due to the expansion
and contraction of existing allocations, they are called as
dynamic allocations.

Traditionally, most batch systems support only static allo-
cations, the reason primarily attributed to the rigid nature of
most parallel applications. However, due to increasing compu-
tational complexity, adaptive or evolving behavior is exhibited
by many applications. Applications using mesh adaptation
techniques such as multiscale analysis [2] or the adaptive
mesh refinement (AMR) [3] often exhibit evolving behavior.
For example, the CFD flow solver Quadflow [4], which uses
the multiscale analysis technique, may unpredictably evolve
for different problems due to an increase of the grid size
during a grid adaptation phase. Such evolving applications
require additional resources to distribute work evenly across
processors. In some cases, the growth in data size may exceed
the memory limit of the node and additional nodes are required
to redistribute data and continue execution.

Dynamic allocation is also essential for applications that
have different resource requirements for different compu-
tational phases. Some applications also unexpectedly entail
simultaneous execution of an analyzer of intermediate results
or other additional smaller simulations alongside the main
simulation. They may also require additional resources in order
to leave the main simulation unaffected. Weather simulations
that require simultaneous execution of nested simulations to
track multiple weather phenomena are an example [5]. In
task-parallel applications, new tasks emerging as a result of
intermediate computations can be offloaded to new resources
without having to steal resources from the main program. This
is more relevant in heterogeneous architectures consisting of
accelerators such as the DEEP cluster [6]. In this ongoing
project, the architecture consists of a cluster part and a booster
part, with booster nodes designed to run computationally
intensive parallel kernels. They can be statically or dynamically
allocated to applications running on cluster nodes, depending
on application demands.

Dynamic allocations are not only beneficial for the appli-



cations but also for overall system utilization. By acquiring
additional resources only at the required computational phase,
they need not be preallocated to the job and hence may
be used by other jobs. When an executing application no
longer requires some resources, they can be released before
the application terminates, thus making them available for
other jobs in the queue. Such a flexible allocation mechanism
can improve the system throughput, the waiting time and the
turnaround time for jobs. Dynamic allocations also help during
node failures by allocating spare nodes to affected jobs, thus
improving fault tolerance. Due to its essential advantages,
dynamic provisioning of traditional resources is considered an
important aspect towards reaching exascale [7]. However, the
lack of dynamic allocation facilities today means the system
and applications do not have the stated benefits.

Enabling these facilities poses multiple challenges. Since
malleability decisions are made single handedly by the sched-
uler, remapping of resources to jobs can be performed at any
time at the scheduler’s discretion. But in contrast to malleable
jobs, evolving jobs introduce the challenge of scheduling
unexpected dynamic requests along with static job submission
requests, and raise questions of how they must be treated
by the scheduler. From the user perspective, satisfying all
dynamic requests favors the evolving jobs but may lead to an
unfair resource starvation scenario for users submitting rigid
jobs. From the system perspective, dynamic allocations may
be counter productive to throughput and system utilization
without an effective dynamic scheduling strategy. Therefore,
handling such requests while maintaining fairness and system
efficiency is the most challenging requirement of supporting
unpredictably evolving jobs in a cluster environment.

This paper advances the state of the art in scheduling
and resource management by enabling dynamic allocations
for unpredictably evolving jobs. We propose a dynamic batch
system for unpredictably evolving applications that integrates
fairness considerations in the scheduling process. Our main
contributions include:

• An extended Torque/Maui batch system that allows
dynamic allocations

• A dynamic fairness strategy implemented in the Maui
scheduler to efficiently service dynamic and static
allocations

• Showing the benefits of enabling dynamic allocations,
thereby strongly motivating such architectures for fu-
ture systems

We use the Quadflow application to demonstrate the benefits of
dynamic allocations for evolving applications and evaluate our
dynamic scheduling strategy with a dynamic ESP benchmark
(modified to include evolving jobs) to highlight the various
user-centric and system-centric advantages. Results show bet-
ter system utilization, throughput and reduced waiting times.

The remainder of this paper is organized as follows.
Section II elaborates on evolving jobs and dynamic allocation
mechanisms and sketches the approach taken in this paper.
Section III presents our dynamic scheduling strategy and its
implementation in the Torque/Maui batch system. In Sec-
tion IV, we present the evaluation of our work. Section V
compares our approach with other related work. Finally, we
present our conclusions in Section VI and discuss future work.

II. SCHEDULING EVOLVING JOBS

In this section, we discuss the problem of scheduling evolv-
ing jobs in detail. We briefly describe the evolving behavior
of Quadflow and review the different strategies for scheduling
evolving jobs by identifying their challenges, feasibility and
consequences. By that, we define the focus of our work and
outline our approach.

A. Job Evolution in Quadflow

As described in Section I, a job can evolve for various
reasons. A common reason for evolution is the increase of
data size and, as a consequence, computational demand during
execution. This characteristic is observed in Quadflow [4],
which solves the compressible Navier-Stokes equations using
a cell-centered fully adaptive finite volume method on locally
refined grids. The computational grids are represented by
block-structured parametric B-Spline patches to deal with
complex geometries. The simulation performs a grid adaptation
in each iteration which may or may not affect the size of the
grid. For certain real-world problems, the size of the grid may
rapidly grow during an adaptation phase which enlarges the
computations. The evolution of data and computation cannot
be predicted due to the multitude of factors that govern the
computation for different problems. Even if the evolution can
be predicted for a particular problem, the number of cells
that will be produced and therefore the number of additional
processors that will be required cannot be foretold. Such a
pattern can also be observed in several AMR applications
[8], [9]. If such applications were able to request additional
resources according to their evolution, longer execution times
and the risk of job abortion could be avoided.

B. Dynamic Resource Allocation

Scheduling unexpected dynamic resource-allocation re-
quests from running jobs introduces many challenges. A dy-
namic request could be served in several ways:

• Allocating the idle resources

• Allocating resources from a separate partition main-
tained specifically to serve dynamic requests

• Stealing resources from malleable jobs

• Stealing resources from preemptive jobs

However, even by exercising all four options, a dynamic re-
source allocation request cannot always be satisfied. Since the
primary goal of batch job schedulers is to increase throughput
and resource utilization, they aim to accommodate as many
jobs as possible and maintain the highest possible utilization of
the system. Therefore, there may not be enough idle resources
in the cluster to serve the evolving job. The separate partition
could also be in use by other evolving jobs. Furthermore,
resource stealing is not feasible when there are no malleable
or preemptive jobs at the time of the dynamic request.

On the other hand, allocating the idle resources to unex-
pected requests raises another issue. In practice, production
clusters run with a well mixed workload of small and large jobs
which often leaves an incomplete cluster utilization. This gives
an opportunity to allocate idle resources to many dynamic
requests. However, it may cause unfair delays to high priority



reservations of queued jobs causing an extended waiting time.
As illustrated in Figure 1, consider a cluster system with six
nodes in which job A is executing on nodes 0 and 1 for a
time slice of 8 hours. Job B acquires nodes 2 and 3, and is
scheduled for to run for 4 hours. Queued job C requires 4
nodes and the earliest time it can start is after 4 hours when
job B has terminated. Then it could run on nodes 2 to 5.
However, if A dynamically acquires the idle nodes 4 and 5
before B terminates, job C will be delayed by an additional
4 hours. Hence, allocating idle resources to dynamic requests
can improve system utilization but possibly at the expense of
fair resource access for evolving and rigid jobs. At the same
time, improving availability through the stated methods still
cannot guarantee resources to uninformed dynamic requests
without prior knowledge of their evolution.

However, with an indication of the minimum and maximum
amount of resources that may be required by an evolving
job, the dynamic resources can be preallocated to this job.
This approach grants all dynamic requests made by the job.
To assure their availability, these resources cannot be used
by rigid jobs. Only malleable or preemptive jobs could be
assigned to these resources so that they can be withdrawn when
required by the evolving job. Unfortunately, predicting the
appropriate size of preallocation is error prone and may result
in too few or no resources being used by the evolving job, but
still charged to the user’s account. Evolving jobs can block
a considerable amount of extra resources and for a workload
dominated by rigid jobs (which is still typical today), this may
cause starvation for rigid jobs and wastage of resources.

Thus, designing a dynamic scheduler with the primary
goal of guaranteeing resources to all dynamic requests by
evolving jobs cannot provide good system utilization and
may result in users having to pay for unused resources as
well (guaranteeing approach). On the other hand, designing
a dynamic scheduler with the primary goal of improving
system performance cannot guarantee resources to all dynamic
requests and a dynamic allocation may result in unfair resource
usage scenarios, as illustrated in Figure 1 (non-guaranteeing
approach). Performance of a cluster system not only depends
on the scheduler but also on the workload. However, the guar-
anteeing approach depends to a great extent on the workload
to achieve good system utilization. The disadvantages resulting
as the consequence of absence of malleable jobs are far greater
compared to the non-guaranteeing approach.

Considering the hard-to-predict nature of evolving applica-
tions like Quadflow and the dominance of rigid jobs in today’s
supercomputers, our design is based on the non-guaranteeing
approach where evolving jobs can be allocated with available
idle resources. Resource availability for dynamic requests can
be enhanced by having a separate partition or by preempting
low priority jobs. Our dynamic assignment strategy (discussed
in the next section) ensures a fair administrator-configurable
allocation of resources between dynamic and static requests.
Thus, our strategy can be used to accomplish a desired balance
in supporting evolving jobs, improving system performance
and fair access to resources.

III. THE DYNAMIC BATCH SYSTEM

In this section, we describe the implementation of our
dynamic allocation facilities in the Torque/Maui batch system.
We start with an overview of the Torque/Maui batch system
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Fig. 1. Effect of dynamic allocation of job A on static reservation of job C.
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Fig. 2. Workflow of the Torque/Maui batch system. Circled numbers indicate
the sequence of steps.

and discuss the extensions to (i) Torque for dynamic allocation
and (ii) Maui for dynamic scheduling including the fairness
mechanism.

A. Overview of Torque/Maui Batch System

The Torque/Maui batch system is one of the most com-
monly used middleware for batch job control. The Torque
resource manager [10] is based on the PBS project [11]
extended to improve scalability and fault tolerance and is cur-
rently maintained by Adaptive Computing. Torque is usually
integrated with sophisticated schedulers such as Maui [12],
which provides advanced scheduling features such as job prior-
itization, fairshare and backfill scheduling. The widespread use
of the Torque/Maui batch system was also one of the principal
reasons for choosing this ensemble to implement our dynamic
scheduling facilities.

A Torque/Maui cluster consists of a headnode, a fron-
tend, and many compute nodes. The headnode runs the
pbs_server daemon (server) and the Maui scheduler dae-
mon. The compute nodes run the pbs_mom daemon (mom).
Users are provided with a number of client commands to
communicate with the server for tasks such as job submission,
alteration and checking the status of a job. They are installed
on the frontend. Figure 2 illustrates the typical workflow
of the Torque/Maui batch system. The client submits a job
through the qsub command by specifying the number of
nodes, the number of processors per node, the duration for
which resources are required (walltime of the job), and other
software or hardware requirements. The job is then queued at
the server. When resources are allocated for this job by the
Maui scheduler, the server sends the job to one of the nodes
allocated for this job (called mother superior) and updates
the state of this job in the queue as running. The mother-
superior node and the other allocated nodes perform a join
operation, after which the user application starts execution.
The TM interface in Torque allows applications to interact
with its local moms. For example, it is used by MPI to spawn
processes on other hosts.



Algorithm 1 Maui Iteration
1: while TRUE do
2: Obtain resource information from Torque
3: Obtain workload information from Torque
4: Update statistics
5: Refresh reservations
6: Select jobs eligible for priority scheduling
7: Prioritize eligible jobs
8: Schedule the jobs in priority order and create reserva-

tions
9: Backfill jobs

10: end while

The Maui scheduler communicates with the server and
schedules jobs iteratively. A scheduling iteration is followed by
a period of sleeping or processing external commands. Maui
will instantly start a new iteration when (i) a job or resource
state change occurs, (ii) a reservation boundary event occurs,
(iii) an external command to resume scheduling is issued or
(iv) a configurable timer expires. The steps of a scheduling
iteration are detailed in Algorithm 1.

During each iteration, Maui obtains the most recent in-
formation about resources and jobs from Torque and updates
the historical statistics and usage information of all the jobs.
Then, jobs meeting a minimum scheduling criterion, based on
throttling policies and job states, are selected and considered
for scheduling. The selected jobs are prioritized according to
various policies and scheduled in the order of their priorities.
When a lack of resources prevents the idle job with the highest
priority from starting, the earliest time when the resources
are available for this job is determined and a reservation is
created. Maui continues to create reservations for N such
highest priority jobs where N can be configured using the
ReservationDepth parameter. Jobs that are not reserved
are then backfilled out of order. Backfilling is a strategy of
increasing resource utilization by running low priority jobs
out of order as long as they do not disturb the high priority
reservations. A higher ReservationDepth leads to a more
conservative backfilling while a lower ReservationDepth
allows more jobs to be backfilled.

Maui considers various aspects for job prioritization such
as the priority weight of a user, resource requirements, and
waiting time of a job. Furthermore, fairshare policies are used
to ensure fair resource access among different users. A detailed
description of these features is available in [12].

B. A Resource Management System for Evolving Jobs

Given the structure of the Torque/Maui batch system, the
following requirements for supporting dynamic (de)allocation
for evolving jobs are imperative.

• An interface through which applications can re-
quest/release resources at runtime

• Functionality to queue dynamic requests for schedul-
ing at the server

• Functionality to associate/disassociate nodes and jobs
dynamically during job runtime

We extended Torque by adding the above features and the
workflow of a dynamic allocation is illustrated in Figure
3. Applications can use the tm_dynget() function of the
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extended TM interface by specifying the number of nodes and
processors per node. The mother superior forwards the request
to the server which changes the job to a special dynqueued
state. This triggers a new scheduling cycle and additional
resources are allocated for this request. The server forwards the
new hostlist to the mother superior and changes the job state
back to running. The hosts from the existing allocation and
the dynamically allocated hosts perform a dyn join operation
which expands the resource allocation for the job. The mother
superior then responds to tm_dynget() with the dynami-
cally allocated hostlist. MPI applications can use the MPI-2 dy-
namic process management facilities to spawn new processes
on the additionally allocated nodes. MPI implementations offer
a “host” or “add-host” parameter to the MPI Info argument
to specify a newly allocated hostlist. Similarly, the function
tm_dynfree() can be called to release nodes by passing
the list of nodes to be released as a parameter (illustrated in
Figure 4).

The call tm_dynfree() usually returns true, as a release
operation is rarely unsuccessful. During dynamic deallocation,
the moms perform a dyn disjoin operation with the nodes to
be released and the server is informed of the deallocation.
Finally, the server updates the freed node’s states internally,
after which they can be allocated to other jobs.

Basically, any process from any host of the parallel job
can call tm_dynget() to request new resources through
its local mom. However, to ensure that only one dynamic
request from the same job is pending at the server at a
time, the dynamic requests are always forwarded to the server
through the mother superior. This simple API consisting of two
functions is sufficient for dynamic resource (de)allocation.

C. Dynamic Scheduling with Maui

By design, the Maui scheduler supports scheduling of rigid
jobs only. In our work, the Maui scheduler was extended to
schedule dynamic requests by:
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• Enriching Maui’s iteration with a scheduling algorithm
that also supports dynamic requests

• Enhancing the resource allocation mechanism to allo-
cate resources for dynamic requests

• Implementing a dynamic fairness scheme to ensure
fairness between dynamic and static requests

The extended Maui iteration is detailed in Algorithm 2.
The algorithm prioritizes a list of eligible static jobs and
dynamic requests separately. While the static jobs are pri-
oritized according to normal priority factors, the dynamic
requests are prioritized in FIFO order. The static jobs are then
scheduled and the necessary reservations are created but the
jobs are not started immediately. The reserved static jobs can
be classified in two categories: (i) StartNow: jobs that can
be started immediately, and (ii) StartLater: jobs that can be
started only at a later point of time. In the next step, for each
dynamic request in the queue, the scheduler tries to allocate
the idle resources and measures the delays that may be caused
to the StartNow and StartLater jobs.

In each iteration, the number of StartNow jobs varies
and is determined based on the number of considered
jobs and available resources. In the original Maui itera-
tion, the number of StartLater jobs is determined based
on the ReservationDepth parameter, mainly to con-
trol backfilling. In the extended algorithm, the number
of StartLater jobs is determined by the maximum of
ReservationDepth and ReservationDelayDepth,
where ReservationDelayDepth is a configurable param-
eter to control the number of StartLater jobs for which delays
need to be measured (Figure 5). Therefore, for delay com-
putations, the reservations of ReservationDelayDepth
number of jobs will be considered and for backfilling, reser-
vations of ReservationDepth number of jobs will be
considered. This allows delays to be computed for a con-
trolled number of jobs irrespective of whether a conservative
backfilling with large ReservationDepth is deployed or
optimistic backfilling with lower ReservationDepth is
deployed. Similar to ReservationDepth, a proper choice
of ReservationDelayDepth for a site depends on its
workload characteristics.

Once the delays to the static jobs are measured, the
dynamic fairness policies are invoked to determine whether
the allocation is fair and can be allowed. The dynamic fairness
policies are site-configurable parameters and are described in
Section III-D. If the reservation is allowed, the dynamic fair-
ness statistics are updated and the job allocation is expanded. If
not, the dynamic request is rejected. The algorithm continues
processing the same for every dynamic request and when all
dynamic requests have either been satisfied or rejected, the
static jobs are scheduled and started in the priority order. In
this step, the number of jobs started may be different than the

Algorithm 2 Extended Maui Iteration
1: while TRUE do
2: Obtain resource information from Torque
3: Obtain workload information from Torque
4: Update statistics
5: Refresh reservations
6: Select static jobs eligible for priority scheduling
7: Select dynamic requests eligible for priority scheduling
8: Prioritize eligible static jobs
9: Prioritize eligible dynamic requests

10: Schedule static jobs in priority order and create reser-
vations (without job start)

11: for each dynamic request in the queue do
12: Try to allocate resources for dynamic request (from

idle before preemptible resources)
13: if resources are available for the job then
14: Check dynamic fairness policies to determine if job

is allowed to get resources
15: if job is allowed then
16: Continue dynamic job with expanded resource

allocation
17: Update dynamic fairshare statistics
18: else
19: Reject the dynamic request
20: end if
21: else
22: Reject the dynamic request
23: end if
24: end for
25: Schedule the static jobs in priority order and create

reservations (with job start)
26: Backfill static jobs
27: end while

number of StartNow jobs in the previous step due to resources
allocated to dynamic requests. Thereafter, low priority jobs are
backfilled out-of-order.

Strategies for allocating resources in response to dynamic
requests can be controlled by site-specific parameters. For ex-
ample, a dynamic request may obtain resources by preempting
(when enabled) other running low priority or backfilled jobs.
Existing Maui parameters can be used for this purpose. In the
current version, due to the simple dynamic (de)allocation pro-
tocol, applications that cannot continue without an expanded
set of resources must request for resources again at a later
point in time if rejected. In contrast, leaving the dynamic
request queued at the server and blocking the application until
resources are obtained is not the best choice for evolving jobs
that can continue execution but would have to run longer
without more resources. An efficient negotiation mechanism
where the application can specify a timeout for obtaining
resources and where the batch system can indicate the time
of availability of resources would be beneficial, and is one of
our future goals.

D. Dynamic Fairness Policies

Fair sharing of resources between users is a compulsory
responsibility of a site and is realized through job, user, and
resource accounting. In static scheduling, fairness policies
play a decisive role in the prioritization of jobs at most sites,
as supercomputing resources are shared by an extensive group



of users. The Maui scheduler’s fairshare policies, configurable
through a set of administrator parameters, allow fine-tuned
control of resource sharing among different users, groups,
accounts, classes and quality of service [12]. However, when
extending support for evolving jobs, they cannot be used to
control the ill effects of resource stealing by an unpredictably
evolving job.

For the dynamic scenario, we introduce two types of
fairness policies dictated by the new parameter DFSPolicy:
(i) DFSSingleJobDelay and (ii) DFSTargetDelay.
The DFSSingleJobDelay simply imposes a limit on
how long each queued job of a particular user can be
delayed due to dynamic allocations to evolving jobs. The
limit can be different for every user and can be set by the
DFSSingleDelayTime parameter.

On the other hand, the DFSTargetDelay policy limits
the cumulative delay caused to users over a configurable
interval. The delay is set with the DFSTargetDelayTime
parameter and the interval with the DFSInterval
parameter, both in total seconds or HH:MM:SS format.
The dynamic fairness setting can also be configured to
combine both policies or disabled by setting the DFSPolicy
to DFSSingleTargetDelay or NONE, respectively. When
disabled, the dynamic requests will have the highest priority
over the static jobs and the delay caused to static jobs will
be ignored. Furthermore, the DFSDynDelayPerm parameter
(1: allow, default ; 0: disallow) specifies whether a particular
user’s job can be delayed or not due to dynamic requests.
Thus, a dynamic allocation will be unsuccessful if it would
delay a job that is not authorized to be delayed. Also, when
the evolving job and the static job are from the same user,
the delay is not considered.

After each interval, the current delays are rolled back
according to the DFSDecay parameter. This parameter
indicates how much the current delay should decay at the end
of an interval. For example, if the limit of delay for a user
is 4800 seconds for an interval and if the current delay at
the end of the interval is 3600 seconds, then a DFSDecay
of 0.2 will result in the current delay of the next interval
being initialized by 20% of 3600 seconds, which is 720.
Therefore, the user’s jobs can be delayed for a maximum
of 4080 seconds in the new interval. This parameter allows
historical delays to be considered.

Figure 6 shows a configuration of the
DFSSingleAndTargetDelay policy over an interval
of 6 hours with a decay of 0.4. Basically, the above delay
permission and time settings can be set not only for users
but also for groups, accounts, job classes and quality of
service of the jobs. In an interval, assuming the current delay
to be 0 for all users and groups, user01’s jobs can be
delayed for any amount of time but cumulatively user01
may experience only a maximum of an hour’s delay. On
the other hand, user03 has no limit on the cumulative
delay but each of user03’s jobs can only be delayed by a
maximum of half an hour. User04’s limits combines both
methods where the user can only experience up to 2 hours
of cumulative delay but each job may only be delayed by
15 minutes at most. The group05’s configuration limits
the cumulative delay experienced by all the users belonging
to the group to a maximum of 4 hours. When user and
group limits are specified for a user and his group, the most
restrictive limits are used. Finally, jobs of user02 and users

DFSPOLICY ! ! !DFSSINGLEANDTARGETDELAY!
DFSINTERVAL ! ! !06:00:00!
DFSDECAY! ! ! !0.4!
!
USERCFG[user01] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=3600 \!

! ! ! ! !DFSSINGLEDELAYTIME=0!
USERCFG[user02] ! !DFSDYNDELAYPERM=0!
USERCFG[user03] ! !DFSDYNDELAYPERM=1  DFSTARGETDELAYTIME=0 \!

! ! ! ! !DFSSINGLEDELAYTIME=00:30:00!
USERCFG[user04] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=02:00:00 \!

! ! ! ! !DFSSINGLEDELAYTIME=00:15:00!
GROUPCFG[group05]! !DFSTARGETDELAYTIME=04:00:00!
GROUPCFG[group06]! !DFSDYNDELAYPERM=0!

	  	  
Fig. 6. An example of dynamic fairness configuration.

of group06 are not allowed to be delayed due to dynamic
allocations. These simple parameters easily enable the desired
dynamic configuration for a site according to its job mix.
The parameters can be used to effectively avoid starvation of
static jobs.

An aspect to be taken into consideration for a careful
choice of delay limits is the effect of walltime and actual
execution time of evolving jobs. Since dynamic reservations
are also made until the rest of the walltime of the evolving
job, delay limits are checked based on this time. However,
users choose walltimes that are usually greater than the
actual execution time of the application. Furthermore, the
evolving application may finish earlier with additional
dynamic resources. Thus the delay calculated during the
dynamic allocation may be longer than the actual delay that
will occur. Therefore, the delay limits should be configured
with moderately higher values than intended to handle such
instances. This enables a more accurate fairness measure.
Also, user’s attempts to take advantage of the system by
submitting a small job (in order to get higher priority) and
expanding after job start will negatively affect the user by
affecting the fairshare priority for the user’s next job. In our
approach, the delay accumulated by the queued job does not
depend on the walltime of the queued job. This may provide
another level of optimization, but also adds another level of
complexity to administrator’s effort in establishing an optimal
setting.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed batch system.
We use Quadflow as a proof of concept application and
show the benefits that dynamic allocation can deliver for
certain groups of production applications. We further present
an analysis of a dynamic workload from both the user and the
system perspective, using the ESP benchmark suite modified
to contain evolving jobs.

Our evaluation consists of real experiments and is not
based on simulations. All the experiments were conducted
on a 15-node cluster system equipped with 2 Intel Xeon
X5570 processors per node running at 2.93 GHz (8 cores
per node). A separate 16th node was used as the headnode
running the modified Torque version 4.1.0 and Maui version
3.3.1. The same node was also used as the frontend. As MPI
implementation, we used Open MPI version 1.7.3.

A. Quadflow

As described earlier, the MPI-based CFD flow solver
Quadflow solves the compressible Navier-Stokes equations
using a cell-centered fully adaptive finite volume method
on locally refined grids. Starting on the coarsest grid level,
the computational grid of the investigated flow configuration
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Fig. 7. Execution times of static and dynamic Quadflow test cases broken
down by adaptation phase. Same shades denote the same phase.

is successively refined until the final grid level is reached.
The local refinement of the grid leads to high computational
efficiency. However, since the areas in need of refinement
can only be identified during the solution process, no prior
knowledge is available on the development of the number
of grid cells. Two generic test cases are investigated in the
following: (i) The laminar boundary layer flow over a flat plate
in a supersonic flow field at Mach 2.6 is a pertinent example of
a generic validation test case [13]. The boundary layer requires
a high local resolution, whereas large parts of the flow domain
can be kept quite coarse. (ii) The supersonic flow around a 2D
Cylinder at Mach 5.28 is a typical example of a high-enthalpy
stagnation point problem. Such flow fields are characterized
by strong bow shocks, which need to be captured again with
high local resolution. However, the exact location and size of
these shocks is not known apriori which makes it difficult to
predict the required number of grid cells in advance. Realistic
scenarios frequently involve shock-shock interactions [14], in
which the aforementioned problems become even more severe.

Figure 7 shows the execution times of the two cases
in a static scenario with 16 and 32 cores (8 process per
node), and a dynamic scenario where the execution is started
with 16 cores/processes and expanded to 32 cores/processes
at a threshold point. After each grid adaptation, the next
computation phase is shaded lighter than the previous one.
Technically, both cases use different numerical methods and
the computational intensity of the FlatPlate case with one
cell is equivalent to the Cylinder case with 4-5 cells. In the
dynamic scenario, the dynamic allocation was done when a
grid adaptation step led to more than 3000 cells per process for
the FlatPlate and 15000 cells per process for the Cylinder test
case. The application performed a total of 2 and 5 adaptations
for the FlatPlate and the Cylinder test case, respectively. The
threshold for the number of cells per process was exceeded in
the final grid adaptation phase in both cases. That is, a dynamic
request was issued after the last grid adaptation.

We can observe that by expanding its allocation to twice
the number of allocated cores, the Cylinder test was faster by
33% (saving 10 hours) and the FlatPlate by 17% (saving 3
hours). The applications could also have been started with a
larger allocation of 32 cores to obtain the speedup displayed
without any dynamic allocation. However, this is only possible
if a user can predict the threshold-exceeding growth of cells
per process. A larger static allocation may also lead to under-
loaded resources with too few cells per process as can be seen
in our example. For instance, for the FlatPlate case, we can
see that the time taken until the final grid adaptation level is

TABLE I. THE VARIOUS JOB TYPES, RESOURCE REQUIREMENTS AND
THEIR STATIC EXECUTION TIME (SET) AND DYNAMIC EXECUTION TIME

(DET) OF THE DYNAMIC ESP BENCHMARK.

Job type User Size Count SET [secs] DET [secs]
A user01 0.03125 75 267 -
B user02 0.06250 9 322 -
C user03 0.50000 3 534 -
D user04 0.25000 3 616 -
E user05 0.50000 3 315 -
F user06 0.06250 9 1846 1230
G user06 0.12500 6 1334 1067
H user06 0.15820 6 1067 896
I user06 0.03125 24 1432 716
J user06 0.06250 24 725 483
K user07 0.09570 15 487 -
L user08 0.12500 36 366 -
M user09 0.25000 15 187 -
Z user10 1.00000 2 100 -

identical when executed with 16 or 32 cores. This implies that
starting the execution with 32 cores (i.e., with an extra 16
cores) has no effect as long as the number of cells stay within
the threshold. By using resources only when required, such
applications can obtain a similar speedup compared to starting
the execution with a larger allocation. This not only reduces
the usage costs for the user but also allows unused resources to
be allocated to other jobs, thereby improving system utilization
and throughput. These aspects are studied in the next section.

B. Dynamic ESP Benchmarks

A meaningful inference of scheduling performance can
be obtained by only analyzing the scheduling outcome of a
given workload. Given the scope of this work, a workload
consisting of rigid and evolving jobs is necessary to evaluate
the proposed batch system. Common scheduler evaluation
benchmark workloads contain only rigid jobs. We are not
aware of any benchmark with evolving jobs that is capable of
assessing dynamic scheduling quality. Therefore, we modified
the well-known ESP benchmark [15] so that it consists of
both evolving and rigid jobs for our workload. Considering
applications like Quadflow, we mainly focus on the dynamic
allocation rather than dynamic deallocation.

The original ESP benchmark is composed of 230 jobs with
14 different job types running the same synthetic application.
Each job type has a unique fixed execution time and uses a
fraction of the total resources. The benchmark was modified
to contain 30% evolving jobs and 70% rigid jobs (totaling
to 69 evolving and 161 rigid jobs). Each rigid job type was
considered to be run by a unique user and the evolving jobs
were considered to be executed by the same user as listed
in Table I. Job types F, G, H, I and J are considered as
evolving jobs and the time at which the dynamic request is
sent is modeled as in the Cylinder case of Quadflow. From the
complete static and dynamic run of the Cylinder test case, it
can be derviced that a dynamic allocation is needed after 16%
of the total static execution time. Therefore, F, G, H, I and J
jobs request 4 additional cores each after 16% of their total
static execution time according to the ESP benchmark. When
resources are not available at that point, the job continues and
requests resources again after 25% of the total static run time
as a second chance to obtain resources. If both attempts fail,
the job continues with the current allocation. If the dynamic
allocation is successful, a linear reduction of the execution
time for the evolving job is assumed. Jobs are submitted in



TABLE II. PERFORMANCE COMPARISON OF THE EVALUATION
CONFIGURATIONS

Config Time Satisfied Util [%] Throughput Throughput
[mins] Dyn Jobs [Jobs/min] [% Increase]

Static 265.78 0 77.45 0.86 -
Dyn-HP 238.78 43 85.02 0.96 11.3
Dyn-500 248.85 20 82.26 0.92 6.8
Dyn-600 241.06 27 83.57 0.95 10.2

a particular order with the first 50 jobs submitted instantly.
Thereafter, jobs are submitted one by one with an interval
of 30 seconds between each job submission. The workload
consists of 2 special Z type jobs which use the complete
cluster. After submitting the other 228 jobs, the Z jobs are
submitted 30 minutes after the last job submission. As defined
by the ESP benchmark, once the Z jobs are submitted, they
receive the highest priority in the queue and no other low
priority job can be executed. Backfilling is also disabled for
the period that a Z job is queued. Evolving jobs that are
already running may still obtain resources dynamically during
this phase. The corresponding static execution time (SET) and
dynamic execution time (DET) are also listed in Table I.

Four configurations were used for our evaluations. First,
a static workload where F, G, H, I and J do not acquire any
dynamic resources. Second, a dynamic workload with dynamic
fairness disabled, thus giving dynamic requests highest priority
(Dynamic-HP). In the third configuration, a dynamic fairness
policy limited the cumulative delay for each static user’s
jobs by 500 seconds in an interval of 1 hour (Dynamic-
500). Similarly, the fourth configuration limited the cumulative
delay for each static user’s jobs by 600 seconds (Dynamic-
600). In all the configurations, the ReservationDepth
and ReservationDelayDepth parameters were set to 5.
Table II lists the results for various performance characteristics
of the four configurations of the workload.

The first two columns of Table II show the total execution
time of the workload (in minutes) and the number of evolving
jobs that succeeded with their dynamic requests. The highest
priority configuration (Dyn-HP) achieves the best overall sys-
tem performance. 43 out of 69 evolving jobs obtained dynamic
resources and the workload execution time was 10% faster ( 27
minutes). The system utilization increased to 85% as compared
to 77% in the static setting and the throughput (TP) increased
by 11.3%. Although the configuration improves the overall
performance, it does not consider the delays caused to other
static jobs.

Figure 8 shows the effect of such a configuration. It com-
pares the waiting time of jobs (in the order of job submission)
in the static workload with the dynamic workload in the
dynamic highest priority configuration. It is evident that due to
better resource utilization and earlier completion of evolving
jobs, the overall waiting time of several jobs is reduced.
However, we can see that many jobs with job IDs between 70
and 125 experience longer waiting times as compared to the
static scenario. This unfairly affects the users who submitted
jobs in this range. This can be observed in Figure 9, which
compares the waiting time of type L jobs in the order of their
submission. Half of the type L jobs are affected by longer
waiting times. For other large production workloads consisting
of long running jobs, these delays are more severe for certain
users. Thus, obtaining the highest performance leads to such
undesirable consequences.

The dynamic fairness policies address such issues. Fig-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  25  50  75  100  125  150  175  200  225  250

W
a
it
in

g
 T

im
e
 [
s
e
c
s
]

Jobs in order of arrival

Static
Dynamic-HP

Fig. 8. Comparison of waiting times of jobs in the static and dynamic
workload where highest priority is used for dynamic requests.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  10  20  30  40

W
a
it
in

g
 T

im
e
 [
s
e
c
s
]

Type L job in order of arrival

Static
Dynamic-HP

Dynamic-500
Dynamic-600

Fig. 9. Comparison of waiting times of type L jobs in all four configurations.

ure 10 compares the waiting times in the Static, Dynamic-
HP and Dynamic-500 configurations. The waiting time of jobs
can be observed to be more uniform with respect to the static
scenario. Figure 9 also shows the considerable improvement
that type L jobs obtain due to this strategy. However, the
configuration satisfied only 20 of the 69 evolving jobs, which
reduced the throughput and the system utilization (Table II)
compared to the highest priority configuration. This is a
natural consequence of enabling a restrictive fairness scheme.
However, moderate fairness policies can also enable a balance
between system performance and user fairness. Figure 11
compares the waiting time of the Static and Dynamic-HP with
the Dynamic-600 configuration. We can observe that with a
little less restriction the number of successful dynamic requests
increased to 27 and a system utilization and throughput close
to that of the Dynamic-HP configuration is realized (Table II).

An important aspect that leads to this result is also the
backfilling strategy. Our dynamic scheduling algorithm prefers
to allocate idle resources to dynamic requests over backfilling
the resources for smaller low priority jobs (as long as the
dynamic request satisfies the fairness condition). This may
give the impression that fewer jobs are backfilled in such
dynamic environments. Our results show the opposite. There
may be idle resources or resources may become idle shortly
after responding to all dynamic requests. These may not be
enough to service the high priority job in the queue (delayed
due to dynamic request). However, it allows more smaller
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Fig. 11. Comparison of waiting times of jobs in Static, Dynamic-HP and
Dynamic-600 configurations.

jobs to be backfilled, which leads to higher throughput. In
Figures 8, 10 and 11, the backfilled jobs are the ones with
considerably lower waiting times in the mid range of the
job IDs. The Dynamic-HP configuration backfills the greatest
number of jobs, followed by the Dynamic-600 and Dynamic-
500 configurations. That is, the larger the number of successful
dynamic requests, the greater was the backfilling ability and
the higher was the throughput (refer Table II). Nevertheless,
this pattern largely depends on the workload and may vary for
a prioritized workload which maintains a fully utilized system.
Thus, in the scenario of scheduling unpredictably evolving
jobs, the results show that our approach provides a robust
and flexible way to obtain a good balance between system
performance and fairness.

C. Dynamic Allocation Overhead

The gain for an evolving application also depends on the
overhead of the dynamic scheduling mechanism. Figure 12
shows the overhead of allocating from 1 to 10 nodes dynami-
cally from a job running on one statically allocated node. Two
scenarios are compared: (i) dynamic allocation without any
workload at the batch system and (ii) with a workload of rigid
jobs and a ReservationDelayDepth parameter of 5. It
can be observed that the overhead for a dynamic allocation for
as many as 10 nodes lies only in the sub-second range, which
is negligible for a real-world application.
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V. RELATED WORK

Efficient resource management and scheduling for cluster
systems for rigid and moldable jobs is a well studied topic
that has seen substantial advancement. The growing complex-
ity of applications and their adaptive nature has motivated
many researchers to seek dynamic resource management and
scheduling solutions. Most of the work, however, pertains
to supporting malleable jobs as a promising way of im-
proving system performance. Notable are the RMS systems
KOALA [16] and OAR [17], which show a clear benefit on
supporting malleable jobs but agree that providing support
for evolving jobs is rather challenging. Other work is mostly
theoretical or based on simulation.

One of the early works in scheduling evolving jobs was
performed by Boon-Ping and Shell-Ying [18] where dynamic
scheduling is based on genetic algorithms. The approach was
evaluated with simulators. However, whether the approach can
be used with complex scheduling aspects such as prioritization,
backfilling and fairshare, was not addressed. Investigating the
RMS requirements for evolving jobs, Ghafoor et al. [19] pro-
posed protocols for supporting evolving jobs and implemented
a prototypical RMS to analyze the dynamic allocation over-
head. However, the question of scheduling was not considered.

The challenge of scheduling unpredictably evolving jobs
was investigated by Klein et al. with the CooRMv2 RMS [20].
In their approach, along with the general job requirements,
the number of resources that may be dynamically required
during execution must be indicated at job submission. The
additional resources are preallocated for the job and may
be used only by malleable or preemptive jobs. The authors
evaluate their approach with a workload of rigid and malleable
jobs and prove the benefits. However, as already discussed
in Section II, this leads to performance degradation with
workloads of evolving and rigid jobs like those used in our
approach.

Support for dynamic allocation on demand can also be
found in the Moab Workload Manager [21] and the SLURM
resource manager [22]. Moab supports resource expansion
and shrinkage for evolving jobs by regularly querying each
application about its load. However, this is available for
interactive workloads only. The SLURM resource manager
supports expand/shrink operations by allowing a running job
to submit a new job with a dependency indicator and then
merging the allocations. By submitting a new job, the existing
static fairshare mechanism is used to prioritize the dynamic
request. In our approach, however, we distinguish the dynamic
and static requests and introduce new fairness schemes for
scheduling. Moreover, the approach in SLURM demands that



when dynamically releasing resources, the job must release
all the nodes that came with a single dynamic request. Our
approach provides more flexibility without such a restriction.
Jobs may dynamically deallocate any subset of their current
allocation.

From a slightly different angle, the fairness problem was
addressed by Dinesh Kumar et al. [23] where jobs expand
their walltime rather than consuming more resources. Their
approach is based on extensions to a lookahead optimizing
scheduler (LOS), which finds the best combination of jobs to
be run simultaneously with the highest resource utilization.
However, using the approach for dynamic allocations is not
feasible.

Our approach enables efficient dynamic allocation as well
as effective dynamic fairness strategies which, to our knowl-
edge, have not been studied before at the depth presented in
this paper.

VI. CONCLUSION AND OUTLOOK

Dynamic resource management facilities are key to serve
the needs of the growing complexity of applications, improve
fault tolerance and increase overall system performance. How-
ever, many challenges need to be overcome in order to create
a fully-fledged batch system which can efficiently schedule
all type of jobs and achieve good system performance. In our
approach, we provide a solution to some of the many issues in
dynamic resource management as a step towards developing
advanced batch systems for the future.

Our proposed batch system enables on-the-fly resource
allocation for evolving jobs based on runtime requests while
ensuring fair access to resources for rigid and evolving jobs.
The approach allows jobs to use additional available resources
during unforeseen evolution. The batch system can expand
and shrink resource allocations to jobs with little overhead.
Our results show that applications can reduce their turnaround
time and waiting time while increasing system utilization and
throughput. Moreover, the dynamic fairness policies provide a
simple set of parameters to configure fairness metrics accord-
ing to site-specific requirements.

In the future, we intend to improve the batch system
with better negotiation protocols between applications and
the batch system and a fair prioritization mechanism between
dynamic requests. We also plan to enable efficient scheduling
for malleable jobs and address their fairness issues to develop
a full-fledged batch system.
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